Numerical Simulation of Multi-Nozzle Droplet Evaporation Characteristics for Desulfurization Wastewater

Spraying flue gas desulfurization wastewater into flue ducts is an emerging technology that is receiving extensive attention in thermal power plants. In order to study the evaporative performance of wastewater-atomizing droplets under variable working conditions, a combined Euler–Lagrange model was...

Full description

Bibliographic Details
Main Authors: Xinrui Guo, Jiangbo Wu, Xiaoze Du, Yaocong Zhang, Shuqin Feng, Shujun Liu
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/14/5180
Description
Summary:Spraying flue gas desulfurization wastewater into flue ducts is an emerging technology that is receiving extensive attention in thermal power plants. In order to study the evaporative performance of wastewater-atomizing droplets under variable working conditions, a combined Euler–Lagrange model was developed to demonstrate the thermal behavior of FGD wastewater spray evaporation in flue gas. The effects of several control factors under various operating conditions were numerically determined and validated against experimental data. Due to the complicated parameters and various other conditions, a least-square support vector machine (LSSVM) model relying on numerical results was used to anticipate the evaporation rate of the droplets. We prove that the LSSVM model has high prediction accuracy for the evaporation rate at different cross-sections of flue under a different operating situation. The conclusion is that for the sake of improving the quality of evaporation, the spacing between two adjacent nozzles should be increased while increasing the flow rate. However, using a higher flue gas temperature, higher initial temperature and smaller diameter of droplets can shorten the time and distance of complete evaporation. In summary, this research analysis can be used effectively to determine the design of the FGD wastewater flue gas evaporative process in thermal power plants.
ISSN:1996-1073