Quantum anomaly detection for collider physics

Abstract We explore the use of Quantum Machine Learning (QML) for anomaly detection at the Large Hadron Collider (LHC). In particular, we explore a semi-supervised approach in the four-lepton final state where simulations are reliable enough for a direct background prediction. This is a representati...

Full description

Bibliographic Details
Main Authors: Sulaiman Alvi, Christian W. Bauer, Benjamin Nachman
Format: Article
Language:English
Published: SpringerOpen 2023-02-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP02(2023)220
Description
Summary:Abstract We explore the use of Quantum Machine Learning (QML) for anomaly detection at the Large Hadron Collider (LHC). In particular, we explore a semi-supervised approach in the four-lepton final state where simulations are reliable enough for a direct background prediction. This is a representative task where classification needs to be performed using small training datasets — a regime that has been suggested for a quantum advantage. We find that Classical Machine Learning (CML) benchmarks outperform standard QML algorithms and are able to automatically identify the presence of anomalous events injected into otherwise background-only datasets.
ISSN:1029-8479