Practical Criteria for <inline-formula><math display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>-Tensors and Their Application

Identifying the positive definiteness of even-order real symmetric tensors is an important component in tensor analysis. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</m...

Full description

Bibliographic Details
Main Authors: Min Li, Haifeng Sang, Panpan Liu, Guorui Huang
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/1/155
Description
Summary:Identifying the positive definiteness of even-order real symmetric tensors is an important component in tensor analysis. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>-tensors have been utilized in identifying the positive definiteness of this kind of tensor. Some new practical criteria for identifying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>-tensors are given in the literature. As an application, several sufficient conditions of the positive definiteness for an even-order real symmetric tensor were obtained. Numerical examples are given to illustrate the effectiveness of the proposed method.
ISSN:2073-8994