Analyzing breast cancer invasive disease event classification through explainable artificial intelligence

IntroductionRecently, accurate machine learning and deep learning approaches have been dedicated to the investigation of breast cancer invasive disease events (IDEs), such as recurrence, contralateral and second cancers. However, such approaches are poorly interpretable.MethodsThus, we designed an E...

Full description

Bibliographic Details
Main Authors: Raffaella Massafra, Annarita Fanizzi, Nicola Amoroso, Samantha Bove, Maria Colomba Comes, Domenico Pomarico, Vittorio Didonna, Sergio Diotaiuti, Luisa Galati, Francesco Giotta, Daniele La Forgia, Agnese Latorre, Angela Lombardi, Annalisa Nardone, Maria Irene Pastena, Cosmo Maurizio Ressa, Lucia Rinaldi, Pasquale Tamborra, Alfredo Zito, Angelo Virgilio Paradiso, Roberto Bellotti, Vito Lorusso
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-02-01
Series:Frontiers in Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmed.2023.1116354/full
_version_ 1797935683616112640
author Raffaella Massafra
Annarita Fanizzi
Nicola Amoroso
Nicola Amoroso
Samantha Bove
Maria Colomba Comes
Domenico Pomarico
Domenico Pomarico
Vittorio Didonna
Sergio Diotaiuti
Luisa Galati
Francesco Giotta
Daniele La Forgia
Agnese Latorre
Angela Lombardi
Annalisa Nardone
Maria Irene Pastena
Cosmo Maurizio Ressa
Lucia Rinaldi
Pasquale Tamborra
Alfredo Zito
Angelo Virgilio Paradiso
Roberto Bellotti
Roberto Bellotti
Vito Lorusso
author_facet Raffaella Massafra
Annarita Fanizzi
Nicola Amoroso
Nicola Amoroso
Samantha Bove
Maria Colomba Comes
Domenico Pomarico
Domenico Pomarico
Vittorio Didonna
Sergio Diotaiuti
Luisa Galati
Francesco Giotta
Daniele La Forgia
Agnese Latorre
Angela Lombardi
Annalisa Nardone
Maria Irene Pastena
Cosmo Maurizio Ressa
Lucia Rinaldi
Pasquale Tamborra
Alfredo Zito
Angelo Virgilio Paradiso
Roberto Bellotti
Roberto Bellotti
Vito Lorusso
author_sort Raffaella Massafra
collection DOAJ
description IntroductionRecently, accurate machine learning and deep learning approaches have been dedicated to the investigation of breast cancer invasive disease events (IDEs), such as recurrence, contralateral and second cancers. However, such approaches are poorly interpretable.MethodsThus, we designed an Explainable Artificial Intelligence (XAI) framework to investigate IDEs within a cohort of 486 breast cancer patients enrolled at IRCCS Istituto Tumori “Giovanni Paolo II” in Bari, Italy. Using Shapley values, we determined the IDE driving features according to two periods, often adopted in clinical practice, of 5 and 10 years from the first tumor diagnosis.ResultsAge, tumor diameter, surgery type, and multiplicity are predominant within the 5-year frame, while therapy-related features, including hormone, chemotherapy schemes and lymphovascular invasion, dominate the 10-year IDE prediction. Estrogen Receptor (ER), proliferation marker Ki67 and metastatic lymph nodes affect both frames.DiscussionThus, our framework aims at shortening the distance between AI and clinical practice
first_indexed 2024-04-10T18:19:05Z
format Article
id doaj.art-6a6b097c0dac4ec68f7e132a2023c0ef
institution Directory Open Access Journal
issn 2296-858X
language English
last_indexed 2024-04-10T18:19:05Z
publishDate 2023-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Medicine
spelling doaj.art-6a6b097c0dac4ec68f7e132a2023c0ef2023-02-02T07:55:06ZengFrontiers Media S.A.Frontiers in Medicine2296-858X2023-02-011010.3389/fmed.2023.11163541116354Analyzing breast cancer invasive disease event classification through explainable artificial intelligenceRaffaella Massafra0Annarita Fanizzi1Nicola Amoroso2Nicola Amoroso3Samantha Bove4Maria Colomba Comes5Domenico Pomarico6Domenico Pomarico7Vittorio Didonna8Sergio Diotaiuti9Luisa Galati10Francesco Giotta11Daniele La Forgia12Agnese Latorre13Angela Lombardi14Annalisa Nardone15Maria Irene Pastena16Cosmo Maurizio Ressa17Lucia Rinaldi18Pasquale Tamborra19Alfredo Zito20Angelo Virgilio Paradiso21Roberto Bellotti22Roberto Bellotti23Vito Lorusso24IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyINFN, Sezione di Bari, Bari, ItalyDipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyINFN, Sezione di Bari, Bari, ItalyDipartimento di Fisica, Università degli Studi di Bari Aldo Moro, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyInternational Agency for Research on Cancer, Lyon, FranceIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyDipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyINFN, Sezione di Bari, Bari, ItalyDipartimento di Fisica, Università degli Studi di Bari Aldo Moro, Bari, ItalyIRCCS Istituto Tumori “Giovanni Paolo II”, Bari, ItalyIntroductionRecently, accurate machine learning and deep learning approaches have been dedicated to the investigation of breast cancer invasive disease events (IDEs), such as recurrence, contralateral and second cancers. However, such approaches are poorly interpretable.MethodsThus, we designed an Explainable Artificial Intelligence (XAI) framework to investigate IDEs within a cohort of 486 breast cancer patients enrolled at IRCCS Istituto Tumori “Giovanni Paolo II” in Bari, Italy. Using Shapley values, we determined the IDE driving features according to two periods, often adopted in clinical practice, of 5 and 10 years from the first tumor diagnosis.ResultsAge, tumor diameter, surgery type, and multiplicity are predominant within the 5-year frame, while therapy-related features, including hormone, chemotherapy schemes and lymphovascular invasion, dominate the 10-year IDE prediction. Estrogen Receptor (ER), proliferation marker Ki67 and metastatic lymph nodes affect both frames.DiscussionThus, our framework aims at shortening the distance between AI and clinical practicehttps://www.frontiersin.org/articles/10.3389/fmed.2023.1116354/fullinvasive disease eventsbreast cancerexplainable AI10-year follow up5-year follow up
spellingShingle Raffaella Massafra
Annarita Fanizzi
Nicola Amoroso
Nicola Amoroso
Samantha Bove
Maria Colomba Comes
Domenico Pomarico
Domenico Pomarico
Vittorio Didonna
Sergio Diotaiuti
Luisa Galati
Francesco Giotta
Daniele La Forgia
Agnese Latorre
Angela Lombardi
Annalisa Nardone
Maria Irene Pastena
Cosmo Maurizio Ressa
Lucia Rinaldi
Pasquale Tamborra
Alfredo Zito
Angelo Virgilio Paradiso
Roberto Bellotti
Roberto Bellotti
Vito Lorusso
Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
Frontiers in Medicine
invasive disease events
breast cancer
explainable AI
10-year follow up
5-year follow up
title Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
title_full Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
title_fullStr Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
title_full_unstemmed Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
title_short Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
title_sort analyzing breast cancer invasive disease event classification through explainable artificial intelligence
topic invasive disease events
breast cancer
explainable AI
10-year follow up
5-year follow up
url https://www.frontiersin.org/articles/10.3389/fmed.2023.1116354/full
work_keys_str_mv AT raffaellamassafra analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT annaritafanizzi analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT nicolaamoroso analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT nicolaamoroso analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT samanthabove analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT mariacolombacomes analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT domenicopomarico analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT domenicopomarico analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT vittoriodidonna analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT sergiodiotaiuti analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT luisagalati analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT francescogiotta analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT danielelaforgia analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT agneselatorre analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT angelalombardi analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT annalisanardone analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT mariairenepastena analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT cosmomaurizioressa analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT luciarinaldi analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT pasqualetamborra analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT alfredozito analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT angelovirgilioparadiso analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT robertobellotti analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT robertobellotti analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence
AT vitolorusso analyzingbreastcancerinvasivediseaseeventclassificationthroughexplainableartificialintelligence