Cascade-Free Modulated Predictive Direct Speed Control of PMSM Drives

Conventional predictive control for permanent magnet synchronous motors (PMSMs) contains dual speed and current loops, and has a complex structure and multiple parameters to be tuned. Conventional predictive direct speed control (PDSC) exhibits an unsatisfactory steady-state performance. To tackle t...

Full description

Bibliographic Details
Main Authors: Changming Zheng, Jiafeng Yang, Zheng Gong, Ziyu Xiao, Xuanxuan Dong
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/19/7200
Description
Summary:Conventional predictive control for permanent magnet synchronous motors (PMSMs) contains dual speed and current loops, and has a complex structure and multiple parameters to be tuned. Conventional predictive direct speed control (PDSC) exhibits an unsatisfactory steady-state performance. To tackle these issues, this paper presents a cascade-free modulated PDSC (MPDSC) scheme for PMSM drives. First, a speed predictive model is built, where a second-order sliding mode observer is employed to quickly and robustly estimate the load torque. Then, a dual objective cost function with speed and stator current tracking is designed, which improves the system’s steady-state performance. Furthermore, the analytical solution of the constrained optimal voltage vector is derived and it is synthesized by space vector modulation, resulting in a fixed switching frequency. Experimental results show that the proposed MPDSC has stronger robustness, and lower torque ripples and stator current harmonics compared to conventional PDSC.
ISSN:1996-1073