Experimental Evaluation of the Bending Behavior of a Drilled Shaft with Partial Casing under Lateral Loads

Few studies, especially those related to field tests, have examined the bending behaviors of drilled shafts with partial casings (DSPCs). This work reports the results of experimental studies on the behavior of DSPCs under lateral loads, including an in situ test and a set of laboratory tests. First...

Full description

Bibliographic Details
Main Authors: Xiaojuan Li, Guoliang Dai, Xueying Yang, Qian Yin, Wenbo Zhu, Fan Zhang
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/20/9469
Description
Summary:Few studies, especially those related to field tests, have examined the bending behaviors of drilled shafts with partial casings (DSPCs). This work reports the results of experimental studies on the behavior of DSPCs under lateral loads, including an in situ test and a set of laboratory tests. First, a DSPC with a diameter of 2 m and length of 87.9 m was studied in clay beds, and a steel casing with a diameter of 2.0 m and length of 33 m was used. In this test, strain gauges were distributed along the steel rebars in the concrete pile and the wall of the steel tube at different depths, and thus the longitudinal strains of the concrete pile and the steel tube could be studied. Second, laboratory experiments were implemented with reinforced concrete-filled steel tubular columns under pure bending conditions. In these tests, strain gauges were distributed along the steel rebars in the concrete pile and the walls of the steel tubes at the pure bending section of the specimens. Different wall thicknesses and drilling fluid conditions were considered. The field test results show that the strain of the concrete piles and the steel tubes were linearly distributed at the same cross-section. This means that a DSPC remains a flat plane after it deforms. Whereas a correction coefficient related to the loading level need to be considered in the calculation of the bending stiffness. Laboratory studies show that the strain of DSPCs was linearly distributed at a small bending moment under the best bond-quality condition, whereas obvious nonlinear behaviors were shown under a large bending moment with poor bond-quality conditions.
ISSN:2076-3417