The first–order factorizable contributions to the three–loop massive operator matrix elements AQg(3) and ΔAQg(3)

The unpolarized and polarized massive operator matrix elements AQg(3) and ΔAQg(3) contain first–order factorizable and non–first–order factorizable contributions in the determining difference or differential equations of their master integrals. We compute their first–order factorizable contributions...

Full description

Bibliographic Details
Main Authors: J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, K. Schönwald
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321323003541
_version_ 1827357889758494720
author J. Ablinger
A. Behring
J. Blümlein
A. De Freitas
A. von Manteuffel
C. Schneider
K. Schönwald
author_facet J. Ablinger
A. Behring
J. Blümlein
A. De Freitas
A. von Manteuffel
C. Schneider
K. Schönwald
author_sort J. Ablinger
collection DOAJ
description The unpolarized and polarized massive operator matrix elements AQg(3) and ΔAQg(3) contain first–order factorizable and non–first–order factorizable contributions in the determining difference or differential equations of their master integrals. We compute their first–order factorizable contributions in the single heavy mass case for all contributing Feynman diagrams. Moreover, we present the complete color–ζ factors for the cases in which also non–first–order factorizable contributions emerge in the master integrals, but cancel in the final result as found by using the method of arbitrary high Mellin moments. Individual contributions depend also on generalized harmonic sums and on nested finite binomial and inverse binomial sums in Mellin N–space, and correspondingly, on Kummer–Poincaré and square–root valued alphabets in Bjorken–x space. We present a complete discussion of the possibilities of solving the present problem in N–space analytically and we also discuss the limitations in the present case to analytically continue the given N–space expressions to N∈C by strict methods. The representation through generating functions allows a well synchronized representation of the first–order factorizable results over a 17–letter alphabet. We finally obtain representations in terms of iterated integrals over the corresponding alphabet in x–space, also containing up to weight w = 5 special constants, which can be rationalized to Kummer–Poincaré iterated integrals at special arguments. The analytic x–space representation requires separate analyses for the intervals x∈[0,1/4],[1/4,1/2],[1/2,1] and x>1. We also derive the small and large x limits of the first–order factorizable contributions. Furthermore, we perform comparisons to a number of known Mellin moments, calculated by a different method for the corresponding subset of Feynman diagrams, and an independent high–precision numerical solution of the problems.
first_indexed 2024-03-08T05:55:38Z
format Article
id doaj.art-6a76932d56984076b0cdabc24e54530c
institution Directory Open Access Journal
issn 0550-3213
language English
last_indexed 2024-03-08T05:55:38Z
publishDate 2024-02-01
publisher Elsevier
record_format Article
series Nuclear Physics B
spelling doaj.art-6a76932d56984076b0cdabc24e54530c2024-02-05T04:30:51ZengElsevierNuclear Physics B0550-32132024-02-01999116427The first–order factorizable contributions to the three–loop massive operator matrix elements AQg(3) and ΔAQg(3)J. Ablinger0A. Behring1J. Blümlein2A. De Freitas3A. von Manteuffel4C. Schneider5K. Schönwald6Johannes Kepler University, Research Institute for Symbolic Computation (RISC), Altenberger Straße 69, A-4040, Linz, Austria; Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenberger Straße 69, A-4040 Linz AustriaTheoretical Physics Department, CERN, 1211 Geneva 23, Switzerland; Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, GermanyDeutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany; Corresponding author.Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany; Johannes Kepler University, Research Institute for Symbolic Computation (RISC), Altenberger Straße 69, A-4040, Linz, AustriaInstitut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany; Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USAJohannes Kepler University, Research Institute for Symbolic Computation (RISC), Altenberger Straße 69, A-4040, Linz, AustriaPhysik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, SwitzerlandThe unpolarized and polarized massive operator matrix elements AQg(3) and ΔAQg(3) contain first–order factorizable and non–first–order factorizable contributions in the determining difference or differential equations of their master integrals. We compute their first–order factorizable contributions in the single heavy mass case for all contributing Feynman diagrams. Moreover, we present the complete color–ζ factors for the cases in which also non–first–order factorizable contributions emerge in the master integrals, but cancel in the final result as found by using the method of arbitrary high Mellin moments. Individual contributions depend also on generalized harmonic sums and on nested finite binomial and inverse binomial sums in Mellin N–space, and correspondingly, on Kummer–Poincaré and square–root valued alphabets in Bjorken–x space. We present a complete discussion of the possibilities of solving the present problem in N–space analytically and we also discuss the limitations in the present case to analytically continue the given N–space expressions to N∈C by strict methods. The representation through generating functions allows a well synchronized representation of the first–order factorizable results over a 17–letter alphabet. We finally obtain representations in terms of iterated integrals over the corresponding alphabet in x–space, also containing up to weight w = 5 special constants, which can be rationalized to Kummer–Poincaré iterated integrals at special arguments. The analytic x–space representation requires separate analyses for the intervals x∈[0,1/4],[1/4,1/2],[1/2,1] and x>1. We also derive the small and large x limits of the first–order factorizable contributions. Furthermore, we perform comparisons to a number of known Mellin moments, calculated by a different method for the corresponding subset of Feynman diagrams, and an independent high–precision numerical solution of the problems.http://www.sciencedirect.com/science/article/pii/S0550321323003541
spellingShingle J. Ablinger
A. Behring
J. Blümlein
A. De Freitas
A. von Manteuffel
C. Schneider
K. Schönwald
The first–order factorizable contributions to the three–loop massive operator matrix elements AQg(3) and ΔAQg(3)
Nuclear Physics B
title The first–order factorizable contributions to the three–loop massive operator matrix elements AQg(3) and ΔAQg(3)
title_full The first–order factorizable contributions to the three–loop massive operator matrix elements AQg(3) and ΔAQg(3)
title_fullStr The first–order factorizable contributions to the three–loop massive operator matrix elements AQg(3) and ΔAQg(3)
title_full_unstemmed The first–order factorizable contributions to the three–loop massive operator matrix elements AQg(3) and ΔAQg(3)
title_short The first–order factorizable contributions to the three–loop massive operator matrix elements AQg(3) and ΔAQg(3)
title_sort first order factorizable contributions to the three loop massive operator matrix elements aqg 3 and δaqg 3
url http://www.sciencedirect.com/science/article/pii/S0550321323003541
work_keys_str_mv AT jablinger thefirstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT abehring thefirstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT jblumlein thefirstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT adefreitas thefirstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT avonmanteuffel thefirstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT cschneider thefirstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT kschonwald thefirstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT jablinger firstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT abehring firstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT jblumlein firstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT adefreitas firstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT avonmanteuffel firstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT cschneider firstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3
AT kschonwald firstorderfactorizablecontributionstothethreeloopmassiveoperatormatrixelementsaqg3anddaqg3