Trigonometric Induced Multivariate Smooth Gauss–Weierstrass Singular Integrals Approximation

In this article, we employ the uniform and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula>, &...

Full description

Bibliographic Details
Main Author: George A. Anastassiou
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/1/115
Description
Summary:In this article, we employ the uniform and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mo>∞</mo></mrow></semantics></math></inline-formula> approximation properties of general smooth multivariate singular integral operators over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>N</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>. It is a trigonometric relief approach with detailed applications to the corresponding smooth multivariate Gauss–Weierstrass singular integral operators. The results are quantitative via Jackson-type inequalities involving the first uniform and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula> moduli of continuity.
ISSN:2227-7390