A Dendrite-Resistant Zinc-Air Battery

Summary: Zinc-air batteries (ZABs) have drawn widespread attention for their high energy densities, abundant raw materials, and low cost. However, the issues of metal dendrite formation and air electrode failure have been impeding the development and application of ZABs. Herein, we designed a novel...

Full description

Bibliographic Details
Main Authors: Shangwei Huang, Hui Li, Pucheng Pei, Keliang Wang, Yu Xiao, Chao Zhang, Chen Chen
Format: Article
Language:English
Published: Elsevier 2020-06-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004220303540
Description
Summary:Summary: Zinc-air batteries (ZABs) have drawn widespread attention for their high energy densities, abundant raw materials, and low cost. However, the issues of metal dendrite formation and air electrode failure have been impeding the development and application of ZABs. Herein, we designed a novel dendrite-resistant ZAB system by adopting multiphase electrolytes to conduct the zinc deposition and the oxygen evolution reaction. The oxygen reduction reaction electrode is kept out of the zinc deposition region to extend the lifespan. The ZABs show an energy density of 1,050.9 Wh kg−1 based on the mass of zinc consumption, with an average Coulombic efficiency of ∼97.4% in 2,000 h discharge and charge cycling. More impressively, even if a short circuit occurs while charging, the battery can maintain the cycle performance without irreversible failure, which is conducive to the reliability of battery modules and its application in other energy storage/conversion devices.
ISSN:2589-0042