Rare Earth Complexes of Europium(II) and Substituted Bis(pyrazolyl)borates with High Photoluminescence Efficiency

Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)bo...

Full description

Bibliographic Details
Main Authors: Ruoyao Guo, Zifeng Zhao, Aoben Wu, Yuqin Li, Kezhi Wang, Zuqiang Bian, Zhiwei Liu
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/22/8053
Description
Summary:Rare earth europium(II) complexes based on d-f transition luminescence have characteristics of broad emission spectra, tunable emission colors and short excited state lifetimes, showing great potential in display, lighting and other fields. In this work, four complexes of Eu(II) and bis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, 3,5-dimethylpyrazolyl or 3-trifluoromethylpyrazole, were designed and synthesized. Due to the varied steric hindrance of the ligands, different numbers of solvent molecules (tetrahydrofuran) are participated to saturate the coordination structure. These complexes showed blue-green to yellow emissions with maximum wavelength in the range of 490–560 nm, and short excited state lifetimes of 30–540 ns. Among them, the highest photoluminescence quantum yield can reach 100%. In addition, when the complexes were heated under vacuum or nitrogen atmosphere, they finally transformed into the complexes of Eu(II) and corresponding tri(pyrazolyl)borate ligands and sublimated away.
ISSN:1420-3049