Photogeneration of singlet oxygen catalyzed by hexafluoroisopropanol for selective degradation of dyes

Summary: Singlet oxygen (1O2) shows great potential for selective degradation of dyes in environmental remediation of wastewater. In this study, we showcased that 1O2 can be effectively generated from an anion complex composed of deprotonated hexafluoroisopropanol anion ([HFIP-H]‒) with hydroperoxyl...

Full description

Bibliographic Details
Main Authors: Jia Han, Lei Wang, Wenjin Cao, Qinqin Yuan, Xiaoguo Zhou, Shilin Liu, Xue-Bin Wang
Format: Article
Language:English
Published: Elsevier 2023-08-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004223013834
Description
Summary:Summary: Singlet oxygen (1O2) shows great potential for selective degradation of dyes in environmental remediation of wastewater. In this study, we showcased that 1O2 can be effectively generated from an anion complex composed of deprotonated hexafluoroisopropanol anion ([HFIP-H]‒) with hydroperoxyl radical (⋅HO2) via ultraviolet (UV) photodetachment. Electronic structure calculations and cryogenic negative ion photoelectron spectroscopy unveil critical proton transfer upon complex formation and electron ejection, effectively photoconverting prevalent triplet ground state 3O2 to long-lived excited 1O2, stabilized by nearby HFIP. Inspired by this spectroscopic study, a novel “photogeneration” strategy is proposed to produce 1O2 with the incorporation of atmospheric O2 and HFIP, acting as a catalyst. Conceptually, the designed catalytic cycle upon UV irradiation and electron injection is able to achieve different degradations of dye molecules in a controllable fashion from decolorization to complete mineralization, shedding new light on potential water purification.
ISSN:2589-0042