Mawhin’s Continuation Technique for a Nonlinear BVP of Variable Order at Resonance via Piecewise Constant Functions

In this paper, we establish the existence of solutions to a nonlinear boundary value problem (BVP) of variable order at resonance. The main theorem in this study is proved with the help of generalized intervals and piecewise constant functions, in which we convert the mentioned Caputo BVP of fractio...

Full description

Bibliographic Details
Main Authors: Shahram Rezapour, Mohammed Said Souid, Sina Etemad, Zoubida Bouazza, Sotiris K. Ntouyas, Suphawat Asawasamrit, Jessada Tariboon
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/4/216
Description
Summary:In this paper, we establish the existence of solutions to a nonlinear boundary value problem (BVP) of variable order at resonance. The main theorem in this study is proved with the help of generalized intervals and piecewise constant functions, in which we convert the mentioned Caputo BVP of fractional variable order to an equivalent standard Caputo BVP at resonance of constant order. In fact, to use the Mawhin’s continuation technique, we have to transform the variable order BVP into a constant order BVP. We prove the existence of solutions based on the existing notions in the coincidence degree theory and Mawhin’s continuation theorem (MCTH). Finally, an example is provided according to the given variable order BVP to show the correctness of results.
ISSN:2504-3110