The Double Dyson Index <i>β</i> Effect in Non-Hermitian Tridiagonal Matrices

The Dyson index, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>, plays an essential role in random matrix theory, as it labels the so-calle...

Full description

Bibliographic Details
Main Authors: Cleverson A. Goulart, Mauricio P. Pato
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/6/868
Description
Summary:The Dyson index, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>, plays an essential role in random matrix theory, as it labels the so-called “three-fold way” that refers to the symmetries satisfied by ensembles under unitary transformations. As is known, its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> 2, and 4 values denote the orthogonal, unitary, and symplectic classes, whose matrix elements are real, complex, and quaternion numbers, respectively. It functions, therefore, as a measure of the number of independent non-diagonal variables. On the other hand, in the case of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> ensembles, which represent the tridiagonal form of the theory, it can assume any real positive value, thus losing that function. Our purpose, however, is to show that, when the Hermitian condition of the real matrices generated with a given value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is removed, and, as a consequence, the number of non-diagonal independent variables doubles, non-Hermitian matrices exist that asymptotically behave as if they had been generated with a value <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>β</mi><mo>.</mo></mrow></semantics></math></inline-formula> Therefore, it is as if the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> index were, in this way, again operative. It is shown that this effect happens for the three tridiagonal ensembles, namely, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>–Hermite, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>–Laguerre, and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>–Jacobi ensembles.
ISSN:1099-4300