National high-resolution cropland classification of Japan with agricultural census information and multi-temporal multi-modality datasets
Multi-modality datasets offer advantages for processing frameworks with complementary information, particularly for large-scale cropland mapping. Extensive training datasets are required to train machine learning algorithms, which can be challenging to obtain. To alleviate the limitations, we extrac...
Những tác giả chính: | Junshi Xia, Naoto Yokoya, Bruno Adriano, Keiichiro Kanemoto |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
Elsevier
2023-03-01
|
Loạt: | International Journal of Applied Earth Observations and Geoinformation |
Những chủ đề: | |
Truy cập trực tuyến: | http://www.sciencedirect.com/science/article/pii/S1569843223000158 |
Những quyển sách tương tự
-
Multi-Modal Spatio-Temporal Knowledge Graph of Ship Management
Bằng: Yitao Zhang, et al.
Được phát hành: (2023-08-01) -
Vegetation Land Segmentation with Multi-Modal and Multi-Temporal Remote Sensing Images: A Temporal Learning Approach and a New Dataset
Bằng: Fang Qu, et al.
Được phát hành: (2023-12-01) -
Multi-Modal and Multi-Temporal Data Fusion: Outcome of the 2012 GRSS Data Fusion Contest
Bằng: Christian Berger, et al.
Được phát hành: (2013-01-01) -
Extraction of cropland field parcels with high resolution remote sensing using multi-task learning
Bằng: Leilei Xu, et al.
Được phát hành: (2023-12-01) -
Single-Stage Extensive Semantic Fusion for multi-modal sarcasm detection
Bằng: Hong Fang, et al.
Được phát hành: (2024-07-01)