Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models

We study integrable models solvable by the nested algebraic Bethe ansatz and described by gl(2|1) or gl(1|2) superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of th...

Full description

Bibliographic Details
Main Authors: A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov
Format: Article
Language:English
Published: Elsevier 2016-10-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321316302553
_version_ 1818312655386968064
author A. Hutsalyuk
A. Liashyk
S.Z. Pakuliak
E. Ragoucy
N.A. Slavnov
author_facet A. Hutsalyuk
A. Liashyk
S.Z. Pakuliak
E. Ragoucy
N.A. Slavnov
author_sort A. Hutsalyuk
collection DOAJ
description We study integrable models solvable by the nested algebraic Bethe ansatz and described by gl(2|1) or gl(1|2) superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t–J model.
first_indexed 2024-12-13T08:21:18Z
format Article
id doaj.art-6ad309ff7c8e4a7ebf1ce5cf09c8e0d3
institution Directory Open Access Journal
issn 0550-3213
1873-1562
language English
last_indexed 2024-12-13T08:21:18Z
publishDate 2016-10-01
publisher Elsevier
record_format Article
series Nuclear Physics B
spelling doaj.art-6ad309ff7c8e4a7ebf1ce5cf09c8e0d32022-12-21T23:54:00ZengElsevierNuclear Physics B0550-32131873-15622016-10-01911C90292710.1016/j.nuclphysb.2016.08.025Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable modelsA. Hutsalyuk0A. Liashyk1S.Z. Pakuliak2E. Ragoucy3N.A. Slavnov4Moscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., RussiaBogoliubov Institute for Theoretical Physics, NAS of Ukraine, Kiev, UkraineMoscow Institute of Physics and Technology, Dolgoprudny, Moscow reg., RussiaLaboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, FranceSteklov Mathematical Institute of Russian Academy of Sciences, Moscow, RussiaWe study integrable models solvable by the nested algebraic Bethe ansatz and described by gl(2|1) or gl(1|2) superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t–J model.http://www.sciencedirect.com/science/article/pii/S0550321316302553
spellingShingle A. Hutsalyuk
A. Liashyk
S.Z. Pakuliak
E. Ragoucy
N.A. Slavnov
Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models
Nuclear Physics B
title Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models
title_full Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models
title_fullStr Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models
title_full_unstemmed Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models
title_short Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models
title_sort form factors of the monodromy matrix entries in gl 2 1 invariant integrable models
url http://www.sciencedirect.com/science/article/pii/S0550321316302553
work_keys_str_mv AT ahutsalyuk formfactorsofthemonodromymatrixentriesingl21invariantintegrablemodels
AT aliashyk formfactorsofthemonodromymatrixentriesingl21invariantintegrablemodels
AT szpakuliak formfactorsofthemonodromymatrixentriesingl21invariantintegrablemodels
AT eragoucy formfactorsofthemonodromymatrixentriesingl21invariantintegrablemodels
AT naslavnov formfactorsofthemonodromymatrixentriesingl21invariantintegrablemodels