Mathematical Simulation of the Synchronized Asynchronous Electric Drive

At the end of the last century asynchronous motors with a phase rotor were most widely used among adjustable-speed AC drives. They were used for conveyors, transporters, cranes. That was due to the relative simplicity to adjust the motor speed by acting on the rotor chain. The introduction of a freq...

Full description

Bibliographic Details
Main Authors: Meshcheryakov Victor, Sibirtsev Dmitry, Mikhailova Ekaterina
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/38/e3sconf_hsted2020_01021.pdf
Description
Summary:At the end of the last century asynchronous motors with a phase rotor were most widely used among adjustable-speed AC drives. They were used for conveyors, transporters, cranes. That was due to the relative simplicity to adjust the motor speed by acting on the rotor chain. The introduction of a frequency control method in such drives is now complicated by the fact that most frequency converters are designed to be used in drives with a cage asynchronous motor. Shorting of a phase winding leads to highly increased losses during acceleration and motor speed control. If the stator winding of a wound-rotor asynchronous motor is connected to a frequency converter and the rotor winding is connected to a DC link of this converter, the motor will have properties of a synchronous one. The electric drive is able to work in a wide range, while motor characteristics are absolutely rigid. The implementation of such control method is presented in this article. The control system operation has been tested with simulation in the Matlab Simulink software pack. The obtained results are defined as follows.
ISSN:2267-1242