Molybdenum Oxide Functional Passivation of Aluminum Dimers for Enhancing Optical-Field and Environmental Stability

In this contribution, we present an experimental and numerical study on the coating of Al plasmonic nanostructures through a conformal layer of high-refractive-index molybdenum oxide. The investigated structures are closely coupled nanodisks where we observe that the effect of the thin coating is to...

Full description

Bibliographic Details
Main Authors: Daniela Lorenzo, Fabrizio Riminucci, Mariachiara Manoccio, Gianluca Balestra, Daniela Simeone, David Maria Tobaldi, Marco Esposito, Adriana Passaseo, Vittorianna Tasco, Massimo Cuscunà
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/9/8/523
Description
Summary:In this contribution, we present an experimental and numerical study on the coating of Al plasmonic nanostructures through a conformal layer of high-refractive-index molybdenum oxide. The investigated structures are closely coupled nanodisks where we observe that the effect of the thin coating is to help gap narrowing down to the sub-5-nm range, where a large electromagnetic field enhancement and confinement can be achieved. The solution represents an alternative to more complex and challenging lithographic approaches, and results are also advantageous for enhancing the long-term stability of aluminum nanostructures.
ISSN:2304-6732