Estimation of Energy Expenditure Using a Patch-Type Sensor Module with an Incremental Radial Basis Function Neural Network
Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type...
Päätekijät: | Meina Li, Keun-Chang Kwak, Youn Tae Kim |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2016-09-01
|
Sarja: | Sensors |
Aiheet: | |
Linkit: | http://www.mdpi.com/1424-8220/16/10/1566 |
Samankaltaisia teoksia
-
Intelligent Predictor of Energy Expenditure with the Use of Patch-Type Sensor Module
Tekijä: Meina Li, et al.
Julkaistu: (2012-10-01) -
Multilevel collocation with radial basis functions
Tekijä: Farrell, P
Julkaistu: (2014) -
Radial basis functions : theory and implementations /
Tekijä: Buhmann, M. D. (Martin Dietrich), 1963-
Julkaistu: (2003) -
Efficient VLSI Architecture for Training Radial Basis Function Networks
Tekijä: Wen-Jyi Hwang, et al.
Julkaistu: (2013-03-01) -
Hybrid radial basis function DEA and its applications to regression, segmentation and cluster analysis problems
Tekijä: Parag C. Pendharkar
Julkaistu: (2021-12-01)