Summary: | Kronecker coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the symmetric group $S_n$. They can also be interpreted as the coefficients of the expansion of the internal product of two Schur polynomials in the basis of Schur polynomials. We show that the problem $\mathrm{KRONCOEFF}$ of computing Kronecker coefficients is very difficult. More specifically, we prove that $\mathrm{KRONCOEFF}$ is #$\mathrm{P}$-hard and contained in the complexity class $\mathrm{GapP}$. Formally, this means that the existence of a polynomial time algorithm for $\mathrm{KRONCOEFF}$ is equivalent to the existence of a polynomial time algorithm for evaluating permanents.
|