A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays

This paper deals with the oscillation of the first-order differential equation with several delay arguments <inline-formula><math display="inline"><semantics><mrow><msup><mi>x</mi><mo>′</mo></msup><mfenced open="(" cl...

Full description

Bibliographic Details
Main Authors: Mahmoud Abdel-Aty, Musa E. Kavgaci, Ioannis P. Stavroulakis, Nour Zidan
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/9/1492
_version_ 1797554705429168128
author Mahmoud Abdel-Aty
Musa E. Kavgaci
Ioannis P. Stavroulakis
Nour Zidan
author_facet Mahmoud Abdel-Aty
Musa E. Kavgaci
Ioannis P. Stavroulakis
Nour Zidan
author_sort Mahmoud Abdel-Aty
collection DOAJ
description This paper deals with the oscillation of the first-order differential equation with several delay arguments <inline-formula><math display="inline"><semantics><mrow><msup><mi>x</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></msubsup><msub><mi>p</mi><mi>i</mi></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mi>x</mi><mfenced separators="" open="(" close=")"><msub><mi>τ</mi><mi>i</mi></msub><mfenced open="(" close=")"><mi>t</mi></mfenced></mfenced><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="4pt"></mspace><mi>t</mi><mo>≥</mo><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo></mrow></semantics></math></inline-formula> where the functions <inline-formula><math display="inline"><semantics><mrow><msub><mi>p</mi><mi>i</mi></msub><mo>,</mo><mspace width="3.33333pt"></mspace><msub><mi>τ</mi><mi>i</mi></msub><mo>∈</mo><mi>C</mi><mfenced separators="" open="(" close=")"><mfenced separators="" open="[" close=")"><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo></mfenced><mo>,</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mfenced><mo>,</mo></mrow></semantics></math></inline-formula> for every <inline-formula><math display="inline"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>,</mo><mspace width="3.33333pt"></mspace><msub><mi>τ</mi><mi>i</mi></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>≤</mo><mi>t</mi></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>≥</mo><msub><mi>t</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mo movablelimits="true" form="prefix">lim</mo><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><msub><mi>τ</mi><mi>i</mi></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>=</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. In this paper, the state-of-the-art on the sharp oscillation conditions are presented. In particular, several sufficient oscillation conditions are presented and it is shown that, under additional hypotheses dealing with slowly varying at infinity functions, some of the “liminf” oscillation conditions can be essentially improved replacing “liminf” by “limsup”. The importance of the slowly varying hypothesis and the essential improvement of the sufficient oscillation conditions are illustrated by examples.
first_indexed 2024-03-10T16:35:50Z
format Article
id doaj.art-6b023eb68964402d93026c3f3a2227ae
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T16:35:50Z
publishDate 2020-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6b023eb68964402d93026c3f3a2227ae2023-11-20T12:27:38ZengMDPI AGMathematics2227-73902020-09-0189149210.3390/math8091492A Survey on Sharp Oscillation Conditions of Differential Equations with Several DelaysMahmoud Abdel-Aty0Musa E. Kavgaci1Ioannis P. Stavroulakis2Nour Zidan3Department of Mathematics, Faculty of Science, Sohag University, Sohag 82749, EgyptDepartment of Mathematics, Faculty of Science, Ankara University, Tandogan Ankara 06100, TurkeyDepartment of Mathematics, Faculty of Science, University of Ioannina, 451 10 Ioannina, GreeceDepartment of Mathematics, College of Science, Jouf University, Sakaka 42421, Saudi ArabiaThis paper deals with the oscillation of the first-order differential equation with several delay arguments <inline-formula><math display="inline"><semantics><mrow><msup><mi>x</mi><mo>′</mo></msup><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></msubsup><msub><mi>p</mi><mi>i</mi></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mi>x</mi><mfenced separators="" open="(" close=")"><msub><mi>τ</mi><mi>i</mi></msub><mfenced open="(" close=")"><mi>t</mi></mfenced></mfenced><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="4pt"></mspace><mi>t</mi><mo>≥</mo><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo></mrow></semantics></math></inline-formula> where the functions <inline-formula><math display="inline"><semantics><mrow><msub><mi>p</mi><mi>i</mi></msub><mo>,</mo><mspace width="3.33333pt"></mspace><msub><mi>τ</mi><mi>i</mi></msub><mo>∈</mo><mi>C</mi><mfenced separators="" open="(" close=")"><mfenced separators="" open="[" close=")"><msub><mi>t</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo></mfenced><mo>,</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mfenced><mo>,</mo></mrow></semantics></math></inline-formula> for every <inline-formula><math display="inline"><semantics><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>,</mo><mspace width="3.33333pt"></mspace><msub><mi>τ</mi><mi>i</mi></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>≤</mo><mi>t</mi></mrow></semantics></math></inline-formula> for <inline-formula><math display="inline"><semantics><mrow><mi>t</mi><mo>≥</mo><msub><mi>t</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mo movablelimits="true" form="prefix">lim</mo><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><msub><mi>τ</mi><mi>i</mi></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>=</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. In this paper, the state-of-the-art on the sharp oscillation conditions are presented. In particular, several sufficient oscillation conditions are presented and it is shown that, under additional hypotheses dealing with slowly varying at infinity functions, some of the “liminf” oscillation conditions can be essentially improved replacing “liminf” by “limsup”. The importance of the slowly varying hypothesis and the essential improvement of the sufficient oscillation conditions are illustrated by examples.https://www.mdpi.com/2227-7390/8/9/1492oscillationdelay argumentsdifferential equations
spellingShingle Mahmoud Abdel-Aty
Musa E. Kavgaci
Ioannis P. Stavroulakis
Nour Zidan
A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays
Mathematics
oscillation
delay arguments
differential equations
title A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays
title_full A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays
title_fullStr A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays
title_full_unstemmed A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays
title_short A Survey on Sharp Oscillation Conditions of Differential Equations with Several Delays
title_sort survey on sharp oscillation conditions of differential equations with several delays
topic oscillation
delay arguments
differential equations
url https://www.mdpi.com/2227-7390/8/9/1492
work_keys_str_mv AT mahmoudabdelaty asurveyonsharposcillationconditionsofdifferentialequationswithseveraldelays
AT musaekavgaci asurveyonsharposcillationconditionsofdifferentialequationswithseveraldelays
AT ioannispstavroulakis asurveyonsharposcillationconditionsofdifferentialequationswithseveraldelays
AT nourzidan asurveyonsharposcillationconditionsofdifferentialequationswithseveraldelays
AT mahmoudabdelaty surveyonsharposcillationconditionsofdifferentialequationswithseveraldelays
AT musaekavgaci surveyonsharposcillationconditionsofdifferentialequationswithseveraldelays
AT ioannispstavroulakis surveyonsharposcillationconditionsofdifferentialequationswithseveraldelays
AT nourzidan surveyonsharposcillationconditionsofdifferentialequationswithseveraldelays