Study on longitudinal stability of ducted vertical take-off and landing fixed-wing UAV

The longitudinal flight stability of the ducted vertical take-off and landing fixed-wing UAV during the flight state of hovering and transition is studied. Firstly, based on the Blade-Element Momentum Theory (BEMT) and experimental data, a coaxial dual-rotor ducted aerodynamic model and a thrust duc...

Full description

Bibliographic Details
Format: Article
Language:zho
Published: EDP Sciences 2021-08-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
Online Access:https://www.jnwpu.org/articles/jnwpu/full_html/2021/04/jnwpu2021394p712/jnwpu2021394p712.html
Description
Summary:The longitudinal flight stability of the ducted vertical take-off and landing fixed-wing UAV during the flight state of hovering and transition is studied. Firstly, based on the Blade-Element Momentum Theory (BEMT) and experimental data, a coaxial dual-rotor ducted aerodynamic model and a thrust ducted aerodynamic model based on characteristic cross-section calculations are established. The model parameters are identified according to the experimental data. Secondly, a UAV flight dynamics model with thrust duct deflection is established according to the six-degree-of-freedom equations. Finally, the case UAV was used to solve the longitudinal balance and stability analysis of hovering and transition state with the established model method, and compared with the hovering experimental results. The results show that the UAV flight dynamics model combined with the ducted dynamic model established in the article can accurately describe the longitudinal flight stability characteristics of this type of aircraft.
ISSN:1000-2758
2609-7125