Technique for operational diagnosis of pipelines of energy systems and complexes

THE PURPOSE. To consider the problems of reliability of pipeline systems of housing and communal services. To analyze existing methods for assessing the technical condition of pipelines. To develop an improved technique that allows you to search for various types of defects in pipelines. To develop...

Full description

Bibliographic Details
Main Authors: R. Z. Shakurova, S. O. Gaponenko, A. E. Kondratiev
Format: Article
Language:English
Published: Kazan State Power Engineering University 2021-03-01
Series:Известия высших учебных заведений: Проблемы энергетики
Subjects:
Online Access:https://www.energyret.ru/jour/article/view/1626
Description
Summary:THE PURPOSE. To consider the problems of reliability of pipeline systems of housing and communal services. To analyze existing methods for assessing the technical condition of pipelines. To develop an improved technique that allows you to search for various types of defects in pipelines. To develop a device for inertial excitation of low-frequency diagnostic vibration vibrations. To develop software in the LabVIEW environment for collecting, storing and processing signals from a sensitive sensor (piezoelectric sensor) installed on a pipeline. To conduct a series of experimental studies to te st the proposed methodology. METHODS. The method of inertial excitation of vibrations was used to excite vibrations in the wall of the investigated pipeline. To search for the natural frequencies of vibrations of the pipeline under study, mathematical mode ling methods were used, implemented in the ANSYS software package. During the experiments, the fast Fourier transform method was used to process the signals coming from the piezoelectric sensor. RESULTS. The article presents a technique for assessing the t echnical condition of pipelines, as well as a device for inertial excitation of vibrations. The article presents the results of experimental studies on a fiberglass pipeline, the results showed that when an oscillatory wave passes through the wall of a defect-free pipeline, its amplitude changes insignificantly. If there is a defect in the wall of the investigated pipeline, the vibration amplitude will be much weaker due to the dissipation of vibrational energy in the place of the defect. Thereby, it is pos sible to determine not only the presence of a defect, but also its size by the degree of attenuation of the signal amplitude CONCLUSION. The proposed technique is the basis for the creation of a new measuring and diagnostic complex for vibration control of pipelines.
ISSN:1998-9903