Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs–AlGaAs core–shell nanowires

Time resolved and time-integrated photoluminescence (PL) spectroscopy is used to investigate the trapping and thermal activation dynamics of excitons bound to single twin defects in individual GaAs–AlGaAs core–shell nanowires. The GaAs core exhibits two distinct spectral emission features that are a...

Full description

Bibliographic Details
Main Authors: Daniel Rudolph, Lucas Schweickert, Stefanie Morkötter, Lukas Hanschke, Simon Hertenberger, Max Bichler, Gregor Koblmüller, Gerhard Abstreiter, Jonathan J Finley
Format: Article
Language:English
Published: IOP Publishing 2013-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/15/11/113032
_version_ 1827874461834018816
author Daniel Rudolph
Lucas Schweickert
Stefanie Morkötter
Lukas Hanschke
Simon Hertenberger
Max Bichler
Gregor Koblmüller
Gerhard Abstreiter
Jonathan J Finley
author_facet Daniel Rudolph
Lucas Schweickert
Stefanie Morkötter
Lukas Hanschke
Simon Hertenberger
Max Bichler
Gregor Koblmüller
Gerhard Abstreiter
Jonathan J Finley
author_sort Daniel Rudolph
collection DOAJ
description Time resolved and time-integrated photoluminescence (PL) spectroscopy is used to investigate the trapping and thermal activation dynamics of excitons bound to single twin defects in individual GaAs–AlGaAs core–shell nanowires. The GaAs core exhibits two distinct spectral emission features that are attributed to free and bound excitons. Time resolved measurements reveal lifetimes of $\tau _{{\rm{FE}}} \sim 1.4 \,{\rm{ns}}$ and $\tau _{{\rm{BE}}} \sim 4.0 \,{\rm{ns}}$ for the free and bound excitons, respectively. For temperatures above 30 K, the global PL intensity is quenched due to non-radiative carrier recombination. In contrast, for temperatures below 20 K we observe clear evidence for thermal detrapping of bound excitons into the continuum. By comparing the time-resolved PL spectra with a two-level rate equation model, quantitative values are obtained for both the exciton trapping and detrapping rates. Our data is consistent with a temperature independent exciton trapping rate >20 GHz that dominates the population dynamics of bound excitons at T  = 6 K. At elevated temperature, the detrapping rate is found to adhere to a thermally activated behavior characterized by a thermal activation energy of $E_{\rm{A}} = 5.8 \pm 1.0 \,{\rm{meV}}$ , very close to the energy spacing of bound and free exciton emission features. This observation implies that bound excitons are thermally activated into the excitonic continuum without the need to overcome additional energetic barriers.
first_indexed 2024-03-12T16:52:37Z
format Article
id doaj.art-6b2fc2d589974d9a811b4a5dce8a9c5a
institution Directory Open Access Journal
issn 1367-2630
language English
last_indexed 2024-03-12T16:52:37Z
publishDate 2013-01-01
publisher IOP Publishing
record_format Article
series New Journal of Physics
spelling doaj.art-6b2fc2d589974d9a811b4a5dce8a9c5a2023-08-08T11:04:58ZengIOP PublishingNew Journal of Physics1367-26302013-01-01151111303210.1088/1367-2630/15/11/113032Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs–AlGaAs core–shell nanowiresDaniel Rudolph0Lucas Schweickert1Stefanie Morkötter2Lukas Hanschke3Simon Hertenberger4Max Bichler5Gregor Koblmüller6Gerhard Abstreiter7Jonathan J Finley8Physik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, GermanyPhysik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, GermanyPhysik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, GermanyPhysik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, GermanyPhysik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, GermanyPhysik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, GermanyPhysik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, GermanyPhysik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, Germany; Institute for Advanced Study, Technische Universität München , Garching D-85748, GermanyPhysik Department, and Center of Nanotechnology and Nanomaterials, Walter Schottky Institut, Technische Universität München , Garching D-85748, GermanyTime resolved and time-integrated photoluminescence (PL) spectroscopy is used to investigate the trapping and thermal activation dynamics of excitons bound to single twin defects in individual GaAs–AlGaAs core–shell nanowires. The GaAs core exhibits two distinct spectral emission features that are attributed to free and bound excitons. Time resolved measurements reveal lifetimes of $\tau _{{\rm{FE}}} \sim 1.4 \,{\rm{ns}}$ and $\tau _{{\rm{BE}}} \sim 4.0 \,{\rm{ns}}$ for the free and bound excitons, respectively. For temperatures above 30 K, the global PL intensity is quenched due to non-radiative carrier recombination. In contrast, for temperatures below 20 K we observe clear evidence for thermal detrapping of bound excitons into the continuum. By comparing the time-resolved PL spectra with a two-level rate equation model, quantitative values are obtained for both the exciton trapping and detrapping rates. Our data is consistent with a temperature independent exciton trapping rate >20 GHz that dominates the population dynamics of bound excitons at T  = 6 K. At elevated temperature, the detrapping rate is found to adhere to a thermally activated behavior characterized by a thermal activation energy of $E_{\rm{A}} = 5.8 \pm 1.0 \,{\rm{meV}}$ , very close to the energy spacing of bound and free exciton emission features. This observation implies that bound excitons are thermally activated into the excitonic continuum without the need to overcome additional energetic barriers.https://doi.org/10.1088/1367-2630/15/11/113032
spellingShingle Daniel Rudolph
Lucas Schweickert
Stefanie Morkötter
Lukas Hanschke
Simon Hertenberger
Max Bichler
Gregor Koblmüller
Gerhard Abstreiter
Jonathan J Finley
Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs–AlGaAs core–shell nanowires
New Journal of Physics
title Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs–AlGaAs core–shell nanowires
title_full Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs–AlGaAs core–shell nanowires
title_fullStr Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs–AlGaAs core–shell nanowires
title_full_unstemmed Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs–AlGaAs core–shell nanowires
title_short Probing the trapping and thermal activation dynamics of excitons at single twin defects in GaAs–AlGaAs core–shell nanowires
title_sort probing the trapping and thermal activation dynamics of excitons at single twin defects in gaas algaas core shell nanowires
url https://doi.org/10.1088/1367-2630/15/11/113032
work_keys_str_mv AT danielrudolph probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires
AT lucasschweickert probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires
AT stefaniemorkotter probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires
AT lukashanschke probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires
AT simonhertenberger probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires
AT maxbichler probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires
AT gregorkoblmuller probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires
AT gerhardabstreiter probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires
AT jonathanjfinley probingthetrappingandthermalactivationdynamicsofexcitonsatsingletwindefectsingaasalgaascoreshellnanowires