Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales

This manuscript develops the study of reverse Hilbert-type inequalities by applying reverse Hölder inequalities on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</...

Full description

Bibliographic Details
Main Authors: Haytham M. Rezk, Ghada AlNemer, Ahmed I. Saied, Omar Bazighifan, Mohammed Zakarya
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/4/750
Description
Summary:This manuscript develops the study of reverse Hilbert-type inequalities by applying reverse Hölder inequalities on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math></inline-formula>. We generalize the reverse inequality of Hilbert-type with power two by replacing the power with a new power <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>></mo><mn>1</mn><mo>.</mo></mrow></semantics></math></inline-formula> The main results are proved by using Specht’s ratio, chain rule and Jensen’s inequality. Our results (when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">T</mi><mo>=</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>) are essentially new. Symmetrical properties play an essential role in determining the correct methods to solve inequalities.
ISSN:2073-8994