Lithium-Ion Cell Fault Detection by Single-Point Impedance Diagnostic and Degradation Mechanism Validation for Series-Wired Batteries Cycled at 0 °C

The utility of a single-point impedance-based technique to monitor the state-of-health of a pack of four 18650 lithium-ion cells wired in series (4S) was demonstrated in a previous publication. This work broadens the applicability of the single-point monitoring technique to identify temperature indu...

Full description

Bibliographic Details
Main Authors: Corey T. Love, Matthieu Dubarry, Tatyana Reshetenko, Arnaud Devie, Neil Spinner, Karen E. Swider-Lyons, Richard Rocheleau
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/4/834
Description
Summary:The utility of a single-point impedance-based technique to monitor the state-of-health of a pack of four 18650 lithium-ion cells wired in series (4S) was demonstrated in a previous publication. This work broadens the applicability of the single-point monitoring technique to identify temperature induced faults within 4S packs at 0 °C by two distinct discharge cut-off thresholds: individual cell cut-off and pack voltage cut-off. The results show how the single-point technique applied to a 4S pack can identify cell faults induced by low temperature degradation when plotted on a unique state-of-health map. Cell degradation is validated through an extensive incremental capacity technique to quantify capacity loss due to low temperature cycling and investigate the underpinnings of cell failure.
ISSN:1996-1073