Optimization Framework to Identify Constitutive Law Parameters of the Human Heart

Over the last decades, computational models have been applied in in-silico simulations of the heart biomechanics. These models depend on input parameters. In particular, four parameters are needed for the constitutive law of Guccione et al., a model describing the stress-strain relation of the heart...

Full description

Bibliographic Details
Main Authors: Kovacheva Ekaterina, Baron Lukas, Schuler Steffen, Gerach Tobias, Dössel Olaf, Loewe Axel
Format: Article
Language:English
Published: De Gruyter 2020-09-01
Series:Current Directions in Biomedical Engineering
Subjects:
Online Access:https://doi.org/10.1515/cdbme-2020-3025
_version_ 1797989300414971904
author Kovacheva Ekaterina
Baron Lukas
Schuler Steffen
Gerach Tobias
Dössel Olaf
Loewe Axel
author_facet Kovacheva Ekaterina
Baron Lukas
Schuler Steffen
Gerach Tobias
Dössel Olaf
Loewe Axel
author_sort Kovacheva Ekaterina
collection DOAJ
description Over the last decades, computational models have been applied in in-silico simulations of the heart biomechanics. These models depend on input parameters. In particular, four parameters are needed for the constitutive law of Guccione et al., a model describing the stress-strain relation of the heart tissue. In the literature, we could find a wide range of values for these parameters. In this work, we propose an optimization framework which identifies the parameters of a constitutive law. This framework is based on experimental measurements conducted by Klotz et al.. They provide an end-diastolic pressure-volume relationship. We applied the proposed framework on one heart model and identified the following elastic parameters to optimally match the Klotz curve: C=313 Pa, bf=17.8, bt=7.1and bft=12A. In general, this approach allows to identify optimized parameters for a constitutive law, for a patient-specific heart geometry. The use of optimized parameters will lead to physiological simulation results of the heart biomechanics and is therefore an important step towards applying computational models in clinical practice.
first_indexed 2024-04-11T08:18:06Z
format Article
id doaj.art-6b3e271ba647496f8bc2cc406d311b86
institution Directory Open Access Journal
issn 2364-5504
language English
last_indexed 2024-04-11T08:18:06Z
publishDate 2020-09-01
publisher De Gruyter
record_format Article
series Current Directions in Biomedical Engineering
spelling doaj.art-6b3e271ba647496f8bc2cc406d311b862022-12-22T04:35:04ZengDe GruyterCurrent Directions in Biomedical Engineering2364-55042020-09-0163959810.1515/cdbme-2020-3025cdbme-2020-3025Optimization Framework to Identify Constitutive Law Parameters of the Human HeartKovacheva Ekaterina0Baron Lukas1Schuler Steffen2Gerach Tobias3Dössel Olaf4Loewe Axel5Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131Karlsruhe, GermanyInstitute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131Karlsruhe, GermanyInstitute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131Karlsruhe, GermanyInstitute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131Karlsruhe, GermanyInstitute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131Karlsruhe, GermanyInstitute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131Karlsruhe, GermanyOver the last decades, computational models have been applied in in-silico simulations of the heart biomechanics. These models depend on input parameters. In particular, four parameters are needed for the constitutive law of Guccione et al., a model describing the stress-strain relation of the heart tissue. In the literature, we could find a wide range of values for these parameters. In this work, we propose an optimization framework which identifies the parameters of a constitutive law. This framework is based on experimental measurements conducted by Klotz et al.. They provide an end-diastolic pressure-volume relationship. We applied the proposed framework on one heart model and identified the following elastic parameters to optimally match the Klotz curve: C=313 Pa, bf=17.8, bt=7.1and bft=12A. In general, this approach allows to identify optimized parameters for a constitutive law, for a patient-specific heart geometry. The use of optimized parameters will lead to physiological simulation results of the heart biomechanics and is therefore an important step towards applying computational models in clinical practice.https://doi.org/10.1515/cdbme-2020-3025optimizationpassive forcematerial propertiesmyocardial stiffnessklotz curve
spellingShingle Kovacheva Ekaterina
Baron Lukas
Schuler Steffen
Gerach Tobias
Dössel Olaf
Loewe Axel
Optimization Framework to Identify Constitutive Law Parameters of the Human Heart
Current Directions in Biomedical Engineering
optimization
passive force
material properties
myocardial stiffness
klotz curve
title Optimization Framework to Identify Constitutive Law Parameters of the Human Heart
title_full Optimization Framework to Identify Constitutive Law Parameters of the Human Heart
title_fullStr Optimization Framework to Identify Constitutive Law Parameters of the Human Heart
title_full_unstemmed Optimization Framework to Identify Constitutive Law Parameters of the Human Heart
title_short Optimization Framework to Identify Constitutive Law Parameters of the Human Heart
title_sort optimization framework to identify constitutive law parameters of the human heart
topic optimization
passive force
material properties
myocardial stiffness
klotz curve
url https://doi.org/10.1515/cdbme-2020-3025
work_keys_str_mv AT kovachevaekaterina optimizationframeworktoidentifyconstitutivelawparametersofthehumanheart
AT baronlukas optimizationframeworktoidentifyconstitutivelawparametersofthehumanheart
AT schulersteffen optimizationframeworktoidentifyconstitutivelawparametersofthehumanheart
AT gerachtobias optimizationframeworktoidentifyconstitutivelawparametersofthehumanheart
AT dosselolaf optimizationframeworktoidentifyconstitutivelawparametersofthehumanheart
AT loeweaxel optimizationframeworktoidentifyconstitutivelawparametersofthehumanheart