Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions

In this paper, we consider the following $(n+1)$st order bvp on the half line with a $\phi-$Laplacian operator $$ \begin{cases} (\phi(u^{(n)}))'(t)=f(t,u(t),\ldots,u^{(n)}(t)),& a.e., \,t\in [ 0,+\infty ),\\& n\in \mathbb{N}\setminus\{0\}, \\ u^{(i)}(0)=A_{i},\, i=0,\ldots,n-2...

Full description

Bibliographic Details
Main Authors: A. Zerki, K. Bachouche, K. Ait-Mahiout
Format: Article
Language:English
Published: Universidad de La Frontera 2023-08-01
Series:Cubo
Subjects:
Online Access:https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3419/2297
_version_ 1797676883604668416
author A. Zerki
K. Bachouche
K. Ait-Mahiout
author_facet A. Zerki
K. Bachouche
K. Ait-Mahiout
author_sort A. Zerki
collection DOAJ
description In this paper, we consider the following $(n+1)$st order bvp on the half line with a $\phi-$Laplacian operator $$ \begin{cases} (\phi(u^{(n)}))'(t)=f(t,u(t),\ldots,u^{(n)}(t)),& a.e., \,t\in [ 0,+\infty ),\\& n\in \mathbb{N}\setminus\{0\}, \\ u^{(i)}(0)=A_{i},\, i=0,\ldots,n-2,\\ u^{(n-1)}(0)+au^{(n)}(0)=B,\\ u^{(n)}(+\infty )=C. \end{cases} $$ The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where $f$ is a $L^{1}$-Carath\'eodory function.
first_indexed 2024-03-11T22:36:53Z
format Article
id doaj.art-6b47d1ca871c4a92b0af68175d65942a
institution Directory Open Access Journal
issn 0716-7776
0719-0646
language English
last_indexed 2024-03-11T22:36:53Z
publishDate 2023-08-01
publisher Universidad de La Frontera
record_format Article
series Cubo
spelling doaj.art-6b47d1ca871c4a92b0af68175d65942a2023-09-22T13:27:37ZengUniversidad de La FronteraCubo0716-77760719-06462023-08-0125217319310.56754/0719-0646.2502.173Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutionsA. Zerki0https://orcid.org/0000-0002-2057-3370K. Bachouche1https://orcid.org/0000-0002-4619-9698K. Ait-Mahiout2https://orcid.org/0000-0002-5991-0442Laboratoire “Théorie du point fixe et Applications”, École Normale Supérieure, BP 92, Kouba, 16006, Algiers, Algeria.Departement of Mathematics, Faculty of Sciences, Algiers University 1, Algiers, Algeria and Laboratory of Mathematical Analysis and Applications, Algiers, Algeria.Laboratoire “Théorie du point fixe et Applications”, École Normale Supérieure, BP 92, Kouba, 16006, Algiers, Algeria.In this paper, we consider the following $(n+1)$st order bvp on the half line with a $\phi-$Laplacian operator $$ \begin{cases} (\phi(u^{(n)}))'(t)=f(t,u(t),\ldots,u^{(n)}(t)),& a.e., \,t\in [ 0,+\infty ),\\& n\in \mathbb{N}\setminus\{0\}, \\ u^{(i)}(0)=A_{i},\, i=0,\ldots,n-2,\\ u^{(n-1)}(0)+au^{(n)}(0)=B,\\ u^{(n)}(+\infty )=C. \end{cases} $$ The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where $f$ is a $L^{1}$-Carath\'eodory function.https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3419/2297boundary value problemone-sided nagumo conditionlower and upper solutionsa priori estimates
spellingShingle A. Zerki
K. Bachouche
K. Ait-Mahiout
Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
Cubo
boundary value problem
one-sided nagumo condition
lower and upper solutions
a priori estimates
title Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
title_full Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
title_fullStr Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
title_full_unstemmed Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
title_short Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
title_sort existence of solutions for higher order phi laplacian bvps on the half line using a one sided nagumo condition with nonordered upper and lower solutions
topic boundary value problem
one-sided nagumo condition
lower and upper solutions
a priori estimates
url https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3419/2297
work_keys_str_mv AT azerki existenceofsolutionsforhigherorderphilaplacianbvpsonthehalflineusingaonesidednagumoconditionwithnonorderedupperandlowersolutions
AT kbachouche existenceofsolutionsforhigherorderphilaplacianbvpsonthehalflineusingaonesidednagumoconditionwithnonorderedupperandlowersolutions
AT kaitmahiout existenceofsolutionsforhigherorderphilaplacianbvpsonthehalflineusingaonesidednagumoconditionwithnonorderedupperandlowersolutions