The AeroCom evaluation and intercomparison of organic aerosol in global models

This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participate...

Full description

Bibliographic Details
Main Authors: K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, X. Zhang
Format: Article
Language:English
Published: Copernicus Publications 2014-10-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/14/10845/2014/acp-14-10845-2014.pdf
_version_ 1828333672143519744
author K. Tsigaridis
N. Daskalakis
M. Kanakidou
P. J. Adams
P. Artaxo
R. Bahadur
Y. Balkanski
S. E. Bauer
N. Bellouin
A. Benedetti
T. Bergman
T. K. Berntsen
J. P. Beukes
H. Bian
K. S. Carslaw
M. Chin
G. Curci
T. Diehl
R. C. Easter
S. J. Ghan
S. L. Gong
A. Hodzic
C. R. Hoyle
T. Iversen
S. Jathar
J. L. Jimenez
J. W. Kaiser
A. Kirkevåg
D. Koch
H. Kokkola
Y. H Lee
G. Lin
X. Liu
G. Luo
X. Ma
G. W. Mann
N. Mihalopoulos
J.-J. Morcrette
J.-F. Müller
G. Myhre
S. Myriokefalitakis
N. L. Ng
D. O'Donnell
J. E. Penner
L. Pozzoli
K. J. Pringle
L. M. Russell
M. Schulz
J. Sciare
Ø. Seland
D. T. Shindell
S. Sillman
R. B. Skeie
D. Spracklen
T. Stavrakou
S. D. Steenrod
T. Takemura
P. Tiitta
S. Tilmes
H. Tost
T. van Noije
P. G. van Zyl
K. von Salzen
F. Yu
Z. Wang
Z. Wang
R. A. Zaveri
H. Zhang
K. Zhang
Q. Zhang
X. Zhang
author_facet K. Tsigaridis
N. Daskalakis
M. Kanakidou
P. J. Adams
P. Artaxo
R. Bahadur
Y. Balkanski
S. E. Bauer
N. Bellouin
A. Benedetti
T. Bergman
T. K. Berntsen
J. P. Beukes
H. Bian
K. S. Carslaw
M. Chin
G. Curci
T. Diehl
R. C. Easter
S. J. Ghan
S. L. Gong
A. Hodzic
C. R. Hoyle
T. Iversen
S. Jathar
J. L. Jimenez
J. W. Kaiser
A. Kirkevåg
D. Koch
H. Kokkola
Y. H Lee
G. Lin
X. Liu
G. Luo
X. Ma
G. W. Mann
N. Mihalopoulos
J.-J. Morcrette
J.-F. Müller
G. Myhre
S. Myriokefalitakis
N. L. Ng
D. O'Donnell
J. E. Penner
L. Pozzoli
K. J. Pringle
L. M. Russell
M. Schulz
J. Sciare
Ø. Seland
D. T. Shindell
S. Sillman
R. B. Skeie
D. Spracklen
T. Stavrakou
S. D. Steenrod
T. Takemura
P. Tiitta
S. Tilmes
H. Tost
T. van Noije
P. G. van Zyl
K. von Salzen
F. Yu
Z. Wang
Z. Wang
R. A. Zaveri
H. Zhang
K. Zhang
Q. Zhang
X. Zhang
author_sort K. Tsigaridis
collection DOAJ
description This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. <br><br> The median global primary OA (POA) source strength is 56 Tg a<sup>−1</sup> (range 34–144 Tg a<sup>&minus;1</sup>) and the median SOA source strength (natural and anthropogenic) is 19 Tg a<sup>−1</sup> (range 13–121 Tg a<sup>&minus;1</sup>). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a<sup>−1</sup> (range 16–121 Tg a<sup>&minus;1</sup>), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a<sup>−1</sup>; range 13–20 Tg a<sup>−1</sup>, with one model at 37 Tg a<sup>&minus;1</sup>). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a<sup>−1</sup> (range 28–209 Tg a<sup>&minus;1</sup>), which is on average 85% of the total OA deposition. <br><br> Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. <br><br> Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.
first_indexed 2024-04-13T21:24:07Z
format Article
id doaj.art-6b4dc766e0e34c96ad3b8a06255cfabb
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-13T21:24:07Z
publishDate 2014-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-6b4dc766e0e34c96ad3b8a06255cfabb2022-12-22T02:29:23ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242014-10-011419108451089510.5194/acp-14-10845-2014The AeroCom evaluation and intercomparison of organic aerosol in global modelsK. Tsigaridis0N. Daskalakis1M. Kanakidou2P. J. Adams3P. Artaxo4R. Bahadur5Y. Balkanski6S. E. Bauer7N. Bellouin8A. Benedetti9T. Bergman10T. K. Berntsen11J. P. Beukes12H. Bian13K. S. Carslaw14M. Chin15G. Curci16T. Diehl17R. C. Easter18S. J. Ghan19S. L. Gong20A. Hodzic21C. R. Hoyle22T. Iversen23S. Jathar24J. L. Jimenez25J. W. Kaiser26A. Kirkevåg27D. Koch28H. Kokkola29Y. H Lee30G. Lin31X. Liu32G. Luo33X. Ma34G. W. Mann35N. Mihalopoulos36J.-J. Morcrette37J.-F. Müller38G. Myhre39S. Myriokefalitakis40N. L. Ng41D. O'Donnell42J. E. Penner43L. Pozzoli44K. J. Pringle45L. M. Russell46M. Schulz47J. Sciare48Ø. Seland49D. T. Shindell50S. Sillman51R. B. Skeie52D. Spracklen53T. Stavrakou54S. D. Steenrod55T. Takemura56P. Tiitta57S. Tilmes58H. Tost59T. van Noije60P. G. van Zyl61K. von Salzen62F. Yu63Z. Wang64Z. Wang65R. A. Zaveri66H. Zhang67K. Zhang68Q. Zhang69X. Zhang70Center for Climate Systems Research, Columbia University, New York, NY, USAEnvironmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, GreeceEnvironmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, GreeceDepartment of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USAUniversity of São Paulo, Department of Applied Physics, BrazilScripps Institution of Oceanography, University of California San Diego, CA, USALaboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, FranceCenter for Climate Systems Research, Columbia University, New York, NY, USAMet Office Hadley Centre, Exeter, UKECMWF, Reading, UKFinnish Meteorological Institute, Kuopio, FinlandUniversity of Oslo, Department of Geosciences, Oslo, NorwayEnvironmental Sciences and Management, North-West University, Potchefstroom, South AfricaUniversity of Maryland, Joint Center for Environmental Technology, Baltimore County, MD, USASchool of Earth and Environment, University of Leeds, Leeds, UKNASA Goddard Space Flight Center, Greenbelt, MD, USADepartment of Physics CETEMPS, University of L'Aquila, ItalyNASA Goddard Space Flight Center, Greenbelt, MD, USAPacific Northwest National Laboratory; Richland, WA, USAPacific Northwest National Laboratory; Richland, WA, USAAir Quality Research Branch, Meteorological Service of Canada, Toronto, Ontario, CanadaNational Center for Atmospheric Research, Boulder, CO, USAPaul Scherrer Institute, Villigen, SwitzerlandECMWF, Reading, UKDepartment of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USAUniversity of Colorado, Department of Chemistry & Biochemistry, Boulder, CO, USAECMWF, Reading, UKNorwegian Meteorological Institute, Oslo, NorwayCenter for Climate Systems Research, Columbia University, New York, NY, USAFinnish Meteorological Institute, Kuopio, FinlandDepartment of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USADepartment of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USAPacific Northwest National Laboratory; Richland, WA, USAState University of New York, Albany, NY, USAEnvironment Canada, Victoria, CanadaNational Centre for Atmospheric Science, University of Leeds, Leeds, UKEnvironmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, GreeceECMWF, Reading, UKBelgian Institute for Space Aeronomy, Brussels, BelgiumCenter for International Climate and Environmental Research – Oslo (CICERO), Oslo, NorwayEnvironmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, GreeceSchool of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USAMax Planck Institute for Meteorology, Hamburg, GermanyDepartment of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USAEurasia Institute of Earth Sciences, Istanbul Technical University, TurkeyDepartment of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, GermanyLaboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, FranceNorwegian Meteorological Institute, Oslo, NorwayLaboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, FranceNorwegian Meteorological Institute, Oslo, NorwayCenter for Climate Systems Research, Columbia University, New York, NY, USADepartment of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, USACenter for International Climate and Environmental Research – Oslo (CICERO), Oslo, NorwaySchool of Earth and Environment, University of Leeds, Leeds, UKBelgian Institute for Space Aeronomy, Brussels, BelgiumUniversities Space Research Association, Greenbelt, MD, USAResearch Institute for Applied Mechanics, Kyushu University, Fukuoka, JapanEnvironmental Sciences and Management, North-West University, Potchefstroom, South AfricaNational Center for Atmospheric Research, Boulder, CO, USAInstitute for Atmospheric Physics, Johannes Gutenberg University, Mainz, GermanyRoyal Netherlands Meteorological Institute (KNMI), De Bilt, the NetherlandsEnvironmental Sciences and Management, North-West University, Potchefstroom, South AfricaEnvironment Canada, Victoria, CanadaState University of New York, Albany, NY, USALaboratory for Climate Studies, Climate Center, China Meteorological Administration, Beijing, ChinaChinese Academy of Meteorological Sciences, Beijing, ChinaPacific Northwest National Laboratory; Richland, WA, USALaboratory for Climate Studies, Climate Center, China Meteorological Administration, Beijing, ChinaPacific Northwest National Laboratory; Richland, WA, USADepartment of Environmental Toxicology, University of California, Davis, CA, USAChinese Academy of Meteorological Sciences, Beijing, ChinaThis paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. <br><br> The median global primary OA (POA) source strength is 56 Tg a<sup>−1</sup> (range 34–144 Tg a<sup>&minus;1</sup>) and the median SOA source strength (natural and anthropogenic) is 19 Tg a<sup>−1</sup> (range 13–121 Tg a<sup>&minus;1</sup>). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a<sup>−1</sup> (range 16–121 Tg a<sup>&minus;1</sup>), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a<sup>−1</sup>; range 13–20 Tg a<sup>−1</sup>, with one model at 37 Tg a<sup>&minus;1</sup>). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a<sup>−1</sup> (range 28–209 Tg a<sup>&minus;1</sup>), which is on average 85% of the total OA deposition. <br><br> Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. <br><br> Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.http://www.atmos-chem-phys.net/14/10845/2014/acp-14-10845-2014.pdf
spellingShingle K. Tsigaridis
N. Daskalakis
M. Kanakidou
P. J. Adams
P. Artaxo
R. Bahadur
Y. Balkanski
S. E. Bauer
N. Bellouin
A. Benedetti
T. Bergman
T. K. Berntsen
J. P. Beukes
H. Bian
K. S. Carslaw
M. Chin
G. Curci
T. Diehl
R. C. Easter
S. J. Ghan
S. L. Gong
A. Hodzic
C. R. Hoyle
T. Iversen
S. Jathar
J. L. Jimenez
J. W. Kaiser
A. Kirkevåg
D. Koch
H. Kokkola
Y. H Lee
G. Lin
X. Liu
G. Luo
X. Ma
G. W. Mann
N. Mihalopoulos
J.-J. Morcrette
J.-F. Müller
G. Myhre
S. Myriokefalitakis
N. L. Ng
D. O'Donnell
J. E. Penner
L. Pozzoli
K. J. Pringle
L. M. Russell
M. Schulz
J. Sciare
Ø. Seland
D. T. Shindell
S. Sillman
R. B. Skeie
D. Spracklen
T. Stavrakou
S. D. Steenrod
T. Takemura
P. Tiitta
S. Tilmes
H. Tost
T. van Noije
P. G. van Zyl
K. von Salzen
F. Yu
Z. Wang
Z. Wang
R. A. Zaveri
H. Zhang
K. Zhang
Q. Zhang
X. Zhang
The AeroCom evaluation and intercomparison of organic aerosol in global models
Atmospheric Chemistry and Physics
title The AeroCom evaluation and intercomparison of organic aerosol in global models
title_full The AeroCom evaluation and intercomparison of organic aerosol in global models
title_fullStr The AeroCom evaluation and intercomparison of organic aerosol in global models
title_full_unstemmed The AeroCom evaluation and intercomparison of organic aerosol in global models
title_short The AeroCom evaluation and intercomparison of organic aerosol in global models
title_sort aerocom evaluation and intercomparison of organic aerosol in global models
url http://www.atmos-chem-phys.net/14/10845/2014/acp-14-10845-2014.pdf
work_keys_str_mv AT ktsigaridis theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ndaskalakis theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT mkanakidou theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT pjadams theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT partaxo theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT rbahadur theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ybalkanski theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT sebauer theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT nbellouin theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT abenedetti theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tbergman theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tkberntsen theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jpbeukes theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT hbian theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT kscarslaw theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT mchin theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT gcurci theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tdiehl theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT rceaster theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT sjghan theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT slgong theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ahodzic theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT crhoyle theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tiversen theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT sjathar theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jljimenez theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jwkaiser theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT akirkevag theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT dkoch theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT hkokkola theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT yhlee theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT glin theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT xliu theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT gluo theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT xma theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT gwmann theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT nmihalopoulos theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jjmorcrette theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jfmuller theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT gmyhre theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT smyriokefalitakis theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT nlng theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT dodonnell theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jepenner theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT lpozzoli theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT kjpringle theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT lmrussell theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT mschulz theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jsciare theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT øseland theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT dtshindell theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ssillman theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT rbskeie theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT dspracklen theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tstavrakou theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT sdsteenrod theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ttakemura theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ptiitta theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT stilmes theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT htost theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tvannoije theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT pgvanzyl theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT kvonsalzen theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT fyu theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT zwang theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT zwang theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT razaveri theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT hzhang theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT kzhang theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT qzhang theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT xzhang theaerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ktsigaridis aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ndaskalakis aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT mkanakidou aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT pjadams aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT partaxo aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT rbahadur aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ybalkanski aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT sebauer aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT nbellouin aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT abenedetti aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tbergman aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tkberntsen aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jpbeukes aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT hbian aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT kscarslaw aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT mchin aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT gcurci aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tdiehl aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT rceaster aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT sjghan aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT slgong aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ahodzic aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT crhoyle aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tiversen aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT sjathar aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jljimenez aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jwkaiser aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT akirkevag aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT dkoch aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT hkokkola aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT yhlee aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT glin aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT xliu aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT gluo aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT xma aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT gwmann aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT nmihalopoulos aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jjmorcrette aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jfmuller aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT gmyhre aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT smyriokefalitakis aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT nlng aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT dodonnell aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jepenner aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT lpozzoli aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT kjpringle aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT lmrussell aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT mschulz aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT jsciare aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT øseland aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT dtshindell aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ssillman aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT rbskeie aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT dspracklen aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tstavrakou aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT sdsteenrod aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ttakemura aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT ptiitta aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT stilmes aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT htost aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT tvannoije aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT pgvanzyl aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT kvonsalzen aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT fyu aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT zwang aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT zwang aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT razaveri aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT hzhang aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT kzhang aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT qzhang aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels
AT xzhang aerocomevaluationandintercomparisonoforganicaerosolinglobalmodels