Summary: | Introduction. Immunomodulator Galavit® is a promising domestic drug for the prevention and treatment of various infectious diseases. Earlier, the authors have developed and investigated in vitro its new dosage form – transdermal therapeutic system (TTS). Positive results from experiments made it possible to proceed to the study of the pharmacokinetic parameters of Galavit® TTS in animals.Objective: to compare the pharmacokinetic parameters of intramuscular and transdermal administration of immunomodulator Galavit® in animal experiments.Materials and methods. Sodium aminodihydrophthalazinedione was used as a substance in the form of a powder to prepare a solution for intramuscular administration of 100 mg (trade name Galavit®, manufacturer SELVIM LLC). The pharmacokinetics of transdermal and intramuscular injections were studied in male Chinchilla rabbits weighing 4.5–5.0 kg. Serum sodium aminodihydrophthalazinedione concentrations in animals were determined by highperformance liquid chromatography using a specially developed technique.Results. In contrast to the injection method, a prolonged and uniform inflow of the drug substance (MP) into the body is observed for percutaneous administration of sodium aminodihydrophthalazinedione. The maximum serum Galavit® concentration for a 40 mg dose (0.172 ± 0.054 μg/mL) and for a 80 mg dose (1.16 ± 0.22 μg/mL) remained at a constant level for 9 and 8 hours, respectively. The relative bioavailability of the Galavit® transdermal therapeutic system was 0.65 and 1.06 for the same doses.Conclusion. Application of Galavit® 80 mg transdermal therapeutic system provides bioavailability that is similar to the intramuscular administration of this drug at the same dose. At the same time, its maximum serum concentration significantly decreases and the retention time of Galavit® in the body increases by more than 10 times, which can contribute to prolongation of the drug effect. Due to the current growing interest in the use of immunomodulator Galavit® for coronavirus infection COVID-19, the development and study of a new dosage form is a promising task
|