Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions
Long-term observation of Earth’s temporal gravity field with enhanced temporal and spatial resolution is a major objective for future satellite gravity missions. Improving the performance of the accelerometers present in such missions is one of the main paths to explore. In this context, we propose...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/14/14/3273 |
_version_ | 1797416145482940416 |
---|---|
author | Nassim Zahzam Bruno Christophe Vincent Lebat Emilie Hardy Phuong-Anh Huynh Noémie Marquet Cédric Blanchard Yannick Bidel Alexandre Bresson Petro Abrykosov Thomas Gruber Roland Pail Ilias Daras Olivier Carraz |
author_facet | Nassim Zahzam Bruno Christophe Vincent Lebat Emilie Hardy Phuong-Anh Huynh Noémie Marquet Cédric Blanchard Yannick Bidel Alexandre Bresson Petro Abrykosov Thomas Gruber Roland Pail Ilias Daras Olivier Carraz |
author_sort | Nassim Zahzam |
collection | DOAJ |
description | Long-term observation of Earth’s temporal gravity field with enhanced temporal and spatial resolution is a major objective for future satellite gravity missions. Improving the performance of the accelerometers present in such missions is one of the main paths to explore. In this context, we propose to study an original concept of a hybrid accelerometer associating a state-of-the-art electrostatic accelerometer (EA) and a promising quantum sensor based on cold atom interferometry. To assess the performance potential of such an instrument, numerical simulations were performed to determine its impact in terms of gravity field retrieval. Taking advantage of the long-term stability of the cold atom interferometer (CAI), it is shown that the reduced drift of the hybrid sensor could lead to improved gravity field retrieval. Nevertheless, this gain vanishes once temporal variations of the gravity field and related aliasing effects are taken into account. Improved de-aliasing models or some specific satellite constellations are then required to maximize the impact of the accelerometer performance gain. To evaluate the achievable acceleration performance in-orbit, a numerical simulator of the hybrid accelerometer was developed and preliminary results are given. The instrument simulator was in part validated by reproducing the performance achieved with a hybrid lab prototype operating on the ground. The problem of satellite rotation impact on the CAI was also investigated both with instrument performance simulations and experimental demonstrations. It is shown that the proposed configuration, where the EA’s proof-mass acts as the reference mirror for the CAI, seems a promising approach to allow the mitigation of satellite rotation. To evaluate the feasibility of such an instrument for space applications, a preliminary design is elaborated along with a preliminary error, mass, volume, and electrical power consumption budget. |
first_indexed | 2024-03-09T05:59:39Z |
format | Article |
id | doaj.art-6b622dedb9f74dd8b02ee804ba9a37e0 |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-03-09T05:59:39Z |
publishDate | 2022-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-6b622dedb9f74dd8b02ee804ba9a37e02023-12-03T12:10:15ZengMDPI AGRemote Sensing2072-42922022-07-011414327310.3390/rs14143273Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity MissionsNassim Zahzam0Bruno Christophe1Vincent Lebat2Emilie Hardy3Phuong-Anh Huynh4Noémie Marquet5Cédric Blanchard6Yannick Bidel7Alexandre Bresson8Petro Abrykosov9Thomas Gruber10Roland Pail11Ilias Daras12Olivier Carraz13DPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceLehrstuhl für Astronomische und Physikalische Geodäsie, Technische Universität München, Arcisstraße 21, 80333 München, GermanyLehrstuhl für Astronomische und Physikalische Geodäsie, Technische Universität München, Arcisstraße 21, 80333 München, GermanyLehrstuhl für Astronomische und Physikalische Geodäsie, Technische Universität München, Arcisstraße 21, 80333 München, GermanyEuropean Space Agency, Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk, The NetherlandsRHEA for ESA–European Space Agency, Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk, The NetherlandsLong-term observation of Earth’s temporal gravity field with enhanced temporal and spatial resolution is a major objective for future satellite gravity missions. Improving the performance of the accelerometers present in such missions is one of the main paths to explore. In this context, we propose to study an original concept of a hybrid accelerometer associating a state-of-the-art electrostatic accelerometer (EA) and a promising quantum sensor based on cold atom interferometry. To assess the performance potential of such an instrument, numerical simulations were performed to determine its impact in terms of gravity field retrieval. Taking advantage of the long-term stability of the cold atom interferometer (CAI), it is shown that the reduced drift of the hybrid sensor could lead to improved gravity field retrieval. Nevertheless, this gain vanishes once temporal variations of the gravity field and related aliasing effects are taken into account. Improved de-aliasing models or some specific satellite constellations are then required to maximize the impact of the accelerometer performance gain. To evaluate the achievable acceleration performance in-orbit, a numerical simulator of the hybrid accelerometer was developed and preliminary results are given. The instrument simulator was in part validated by reproducing the performance achieved with a hybrid lab prototype operating on the ground. The problem of satellite rotation impact on the CAI was also investigated both with instrument performance simulations and experimental demonstrations. It is shown that the proposed configuration, where the EA’s proof-mass acts as the reference mirror for the CAI, seems a promising approach to allow the mitigation of satellite rotation. To evaluate the feasibility of such an instrument for space applications, a preliminary design is elaborated along with a preliminary error, mass, volume, and electrical power consumption budget.https://www.mdpi.com/2072-4292/14/14/3273cold atom interferometerelectrostatic accelerometerhybrid accelerometergravity missionquantum space gravitysatellite geodesy |
spellingShingle | Nassim Zahzam Bruno Christophe Vincent Lebat Emilie Hardy Phuong-Anh Huynh Noémie Marquet Cédric Blanchard Yannick Bidel Alexandre Bresson Petro Abrykosov Thomas Gruber Roland Pail Ilias Daras Olivier Carraz Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions Remote Sensing cold atom interferometer electrostatic accelerometer hybrid accelerometer gravity mission quantum space gravity satellite geodesy |
title | Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions |
title_full | Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions |
title_fullStr | Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions |
title_full_unstemmed | Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions |
title_short | Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions |
title_sort | hybrid electrostatic atomic accelerometer for future space gravity missions |
topic | cold atom interferometer electrostatic accelerometer hybrid accelerometer gravity mission quantum space gravity satellite geodesy |
url | https://www.mdpi.com/2072-4292/14/14/3273 |
work_keys_str_mv | AT nassimzahzam hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT brunochristophe hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT vincentlebat hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT emiliehardy hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT phuonganhhuynh hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT noemiemarquet hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT cedricblanchard hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT yannickbidel hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT alexandrebresson hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT petroabrykosov hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT thomasgruber hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT rolandpail hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT iliasdaras hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions AT oliviercarraz hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions |