Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions

Long-term observation of Earth’s temporal gravity field with enhanced temporal and spatial resolution is a major objective for future satellite gravity missions. Improving the performance of the accelerometers present in such missions is one of the main paths to explore. In this context, we propose...

Full description

Bibliographic Details
Main Authors: Nassim Zahzam, Bruno Christophe, Vincent Lebat, Emilie Hardy, Phuong-Anh Huynh, Noémie Marquet, Cédric Blanchard, Yannick Bidel, Alexandre Bresson, Petro Abrykosov, Thomas Gruber, Roland Pail, Ilias Daras, Olivier Carraz
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/14/3273
_version_ 1797416145482940416
author Nassim Zahzam
Bruno Christophe
Vincent Lebat
Emilie Hardy
Phuong-Anh Huynh
Noémie Marquet
Cédric Blanchard
Yannick Bidel
Alexandre Bresson
Petro Abrykosov
Thomas Gruber
Roland Pail
Ilias Daras
Olivier Carraz
author_facet Nassim Zahzam
Bruno Christophe
Vincent Lebat
Emilie Hardy
Phuong-Anh Huynh
Noémie Marquet
Cédric Blanchard
Yannick Bidel
Alexandre Bresson
Petro Abrykosov
Thomas Gruber
Roland Pail
Ilias Daras
Olivier Carraz
author_sort Nassim Zahzam
collection DOAJ
description Long-term observation of Earth’s temporal gravity field with enhanced temporal and spatial resolution is a major objective for future satellite gravity missions. Improving the performance of the accelerometers present in such missions is one of the main paths to explore. In this context, we propose to study an original concept of a hybrid accelerometer associating a state-of-the-art electrostatic accelerometer (EA) and a promising quantum sensor based on cold atom interferometry. To assess the performance potential of such an instrument, numerical simulations were performed to determine its impact in terms of gravity field retrieval. Taking advantage of the long-term stability of the cold atom interferometer (CAI), it is shown that the reduced drift of the hybrid sensor could lead to improved gravity field retrieval. Nevertheless, this gain vanishes once temporal variations of the gravity field and related aliasing effects are taken into account. Improved de-aliasing models or some specific satellite constellations are then required to maximize the impact of the accelerometer performance gain. To evaluate the achievable acceleration performance in-orbit, a numerical simulator of the hybrid accelerometer was developed and preliminary results are given. The instrument simulator was in part validated by reproducing the performance achieved with a hybrid lab prototype operating on the ground. The problem of satellite rotation impact on the CAI was also investigated both with instrument performance simulations and experimental demonstrations. It is shown that the proposed configuration, where the EA’s proof-mass acts as the reference mirror for the CAI, seems a promising approach to allow the mitigation of satellite rotation. To evaluate the feasibility of such an instrument for space applications, a preliminary design is elaborated along with a preliminary error, mass, volume, and electrical power consumption budget.
first_indexed 2024-03-09T05:59:39Z
format Article
id doaj.art-6b622dedb9f74dd8b02ee804ba9a37e0
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T05:59:39Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-6b622dedb9f74dd8b02ee804ba9a37e02023-12-03T12:10:15ZengMDPI AGRemote Sensing2072-42922022-07-011414327310.3390/rs14143273Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity MissionsNassim Zahzam0Bruno Christophe1Vincent Lebat2Emilie Hardy3Phuong-Anh Huynh4Noémie Marquet5Cédric Blanchard6Yannick Bidel7Alexandre Bresson8Petro Abrykosov9Thomas Gruber10Roland Pail11Ilias Daras12Olivier Carraz13DPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceDPHY, ONERA, Université Paris-Saclay, Chemin de la Hunière-BP80100, F-91123 Palaiseau, FranceLehrstuhl für Astronomische und Physikalische Geodäsie, Technische Universität München, Arcisstraße 21, 80333 München, GermanyLehrstuhl für Astronomische und Physikalische Geodäsie, Technische Universität München, Arcisstraße 21, 80333 München, GermanyLehrstuhl für Astronomische und Physikalische Geodäsie, Technische Universität München, Arcisstraße 21, 80333 München, GermanyEuropean Space Agency, Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk, The NetherlandsRHEA for ESA–European Space Agency, Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk, The NetherlandsLong-term observation of Earth’s temporal gravity field with enhanced temporal and spatial resolution is a major objective for future satellite gravity missions. Improving the performance of the accelerometers present in such missions is one of the main paths to explore. In this context, we propose to study an original concept of a hybrid accelerometer associating a state-of-the-art electrostatic accelerometer (EA) and a promising quantum sensor based on cold atom interferometry. To assess the performance potential of such an instrument, numerical simulations were performed to determine its impact in terms of gravity field retrieval. Taking advantage of the long-term stability of the cold atom interferometer (CAI), it is shown that the reduced drift of the hybrid sensor could lead to improved gravity field retrieval. Nevertheless, this gain vanishes once temporal variations of the gravity field and related aliasing effects are taken into account. Improved de-aliasing models or some specific satellite constellations are then required to maximize the impact of the accelerometer performance gain. To evaluate the achievable acceleration performance in-orbit, a numerical simulator of the hybrid accelerometer was developed and preliminary results are given. The instrument simulator was in part validated by reproducing the performance achieved with a hybrid lab prototype operating on the ground. The problem of satellite rotation impact on the CAI was also investigated both with instrument performance simulations and experimental demonstrations. It is shown that the proposed configuration, where the EA’s proof-mass acts as the reference mirror for the CAI, seems a promising approach to allow the mitigation of satellite rotation. To evaluate the feasibility of such an instrument for space applications, a preliminary design is elaborated along with a preliminary error, mass, volume, and electrical power consumption budget.https://www.mdpi.com/2072-4292/14/14/3273cold atom interferometerelectrostatic accelerometerhybrid accelerometergravity missionquantum space gravitysatellite geodesy
spellingShingle Nassim Zahzam
Bruno Christophe
Vincent Lebat
Emilie Hardy
Phuong-Anh Huynh
Noémie Marquet
Cédric Blanchard
Yannick Bidel
Alexandre Bresson
Petro Abrykosov
Thomas Gruber
Roland Pail
Ilias Daras
Olivier Carraz
Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions
Remote Sensing
cold atom interferometer
electrostatic accelerometer
hybrid accelerometer
gravity mission
quantum space gravity
satellite geodesy
title Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions
title_full Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions
title_fullStr Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions
title_full_unstemmed Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions
title_short Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions
title_sort hybrid electrostatic atomic accelerometer for future space gravity missions
topic cold atom interferometer
electrostatic accelerometer
hybrid accelerometer
gravity mission
quantum space gravity
satellite geodesy
url https://www.mdpi.com/2072-4292/14/14/3273
work_keys_str_mv AT nassimzahzam hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT brunochristophe hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT vincentlebat hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT emiliehardy hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT phuonganhhuynh hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT noemiemarquet hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT cedricblanchard hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT yannickbidel hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT alexandrebresson hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT petroabrykosov hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT thomasgruber hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT rolandpail hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT iliasdaras hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions
AT oliviercarraz hybridelectrostaticatomicaccelerometerforfuturespacegravitymissions