Location Determination of Impact on the Wind Turbine Blade Surface Based on the FBG and the Time Difference

This paper proposes an approach to the determination of the precise location of an impact on the surface of a wind turbine blade (WTB) based on a fiber Bragg grating (FBG) and the time difference, and its effectiveness is verified by experiments. First, the strain on the WTB surface is detected with...

Full description

Bibliographic Details
Main Authors: Bingkai Wang, Wenlei Sun, Hongwei Wang, Yunfa Wan, Tiantian Xu
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/1/232
Description
Summary:This paper proposes an approach to the determination of the precise location of an impact on the surface of a wind turbine blade (WTB) based on a fiber Bragg grating (FBG) and the time difference, and its effectiveness is verified by experiments. First, the strain on the WTB surface is detected with an FBG. Then, the signal is decomposed into a series of components via variational mode decomposition (VMD), and some signals with impact characteristics are chosen for reconstruction. The instant energy of the reconstructed signal is then amplified through the Teager energy operator (TEO) to identify the time difference between FBGs. Finally, the coordinate of the impact point is obtained by solving the hyperbolic mode with the time difference. The results of experiments demonstrate that the proposed approach exhibits good performance with high accuracy (97%) and low error (12.3 mm).
ISSN:1424-8220