Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels

In the present paper, we provide an analytical expression for the first- and second-order thermal slip coefficients, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn...

Full description

Bibliographic Details
Main Authors: Tommaso Missoni, Hiroki Yamaguchi, Irina Graur, Silvia Lorenzani
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/6/12/445
_version_ 1797504777378070528
author Tommaso Missoni
Hiroki Yamaguchi
Irina Graur
Silvia Lorenzani
author_facet Tommaso Missoni
Hiroki Yamaguchi
Irina Graur
Silvia Lorenzani
author_sort Tommaso Missoni
collection DOAJ
description In the present paper, we provide an analytical expression for the first- and second-order thermal slip coefficients, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>T</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>T</mi></mrow></msub></semantics></math></inline-formula>, by means of a variational technique that applies to the integrodifferential form of the Boltzmann equation based on the true linearized collision operator for hard-sphere molecules. The Cercignani-Lampis scattering kernel of the gas-surface interaction has been considered in order to take into account the influence of the accommodation coefficients (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>) on the slip parameters. Comparing our theoretical results with recent experimental data on the mass flow rate and the slip coefficient for five noble gases (helium, neon, argon, krypton, and xenon), we found out that there is a continuous set of values for the pair (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>) which leads to the same thermal slip parameters. To uniquely determine the accommodation coefficients, we took into account a further series of measurements carried out with the same experimental apparatus, where the thermal molecular pressure exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> has been also evaluated. Therefore, the new method proposed in the present work for extracting the accommodation coefficients relies on two steps. First of all, since <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> mainly depends on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, we fix the tangential momentum accommodation coefficient in such a way as to obtain a fair agreement between theoretical and experimental results. Then, among the multiple pairs of variational solutions for (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>), giving the same thermal slip coefficients (chosen to closely approximate the measurements), we select the unique pair with the previously determined value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>. The analysis carried out in the present work confirms that both accommodation coefficients increase by increasing the molecular weight of the considered gases, as already highlighted in the literature.
first_indexed 2024-03-10T04:09:11Z
format Article
id doaj.art-6b63057ac77347fb99b3f2b9751f44fa
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-03-10T04:09:11Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-6b63057ac77347fb99b3f2b9751f44fa2023-11-23T08:15:35ZengMDPI AGFluids2311-55212021-12-0161244510.3390/fluids6120445Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in MicrochannelsTommaso Missoni0Hiroki Yamaguchi1Irina Graur2Silvia Lorenzani3Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, ItalyDepartment of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Aichi, JapanAix-Marseille Université, CNRS IUSTI UMR 7343, 5 Rue Enrico Fermi, 13453 Marseille, FranceDipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, ItalyIn the present paper, we provide an analytical expression for the first- and second-order thermal slip coefficients, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>T</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>T</mi></mrow></msub></semantics></math></inline-formula>, by means of a variational technique that applies to the integrodifferential form of the Boltzmann equation based on the true linearized collision operator for hard-sphere molecules. The Cercignani-Lampis scattering kernel of the gas-surface interaction has been considered in order to take into account the influence of the accommodation coefficients (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>) on the slip parameters. Comparing our theoretical results with recent experimental data on the mass flow rate and the slip coefficient for five noble gases (helium, neon, argon, krypton, and xenon), we found out that there is a continuous set of values for the pair (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>) which leads to the same thermal slip parameters. To uniquely determine the accommodation coefficients, we took into account a further series of measurements carried out with the same experimental apparatus, where the thermal molecular pressure exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> has been also evaluated. Therefore, the new method proposed in the present work for extracting the accommodation coefficients relies on two steps. First of all, since <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> mainly depends on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, we fix the tangential momentum accommodation coefficient in such a way as to obtain a fair agreement between theoretical and experimental results. Then, among the multiple pairs of variational solutions for (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>), giving the same thermal slip coefficients (chosen to closely approximate the measurements), we select the unique pair with the previously determined value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>. The analysis carried out in the present work confirms that both accommodation coefficients increase by increasing the molecular weight of the considered gases, as already highlighted in the literature.https://www.mdpi.com/2311-5521/6/12/445Boltzmann equationhard-sphere moleculesCercignani-Lampis scattering kernelthermal slip coefficientsthermal molecular pressure exponent
spellingShingle Tommaso Missoni
Hiroki Yamaguchi
Irina Graur
Silvia Lorenzani
Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels
Fluids
Boltzmann equation
hard-sphere molecules
Cercignani-Lampis scattering kernel
thermal slip coefficients
thermal molecular pressure exponent
title Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels
title_full Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels
title_fullStr Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels
title_full_unstemmed Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels
title_short Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels
title_sort extraction of tangential momentum and normal energy accommodation coefficients by comparing variational solutions of the boltzmann equation with experiments on thermal creep gas flow in microchannels
topic Boltzmann equation
hard-sphere molecules
Cercignani-Lampis scattering kernel
thermal slip coefficients
thermal molecular pressure exponent
url https://www.mdpi.com/2311-5521/6/12/445
work_keys_str_mv AT tommasomissoni extractionoftangentialmomentumandnormalenergyaccommodationcoefficientsbycomparingvariationalsolutionsoftheboltzmannequationwithexperimentsonthermalcreepgasflowinmicrochannels
AT hirokiyamaguchi extractionoftangentialmomentumandnormalenergyaccommodationcoefficientsbycomparingvariationalsolutionsoftheboltzmannequationwithexperimentsonthermalcreepgasflowinmicrochannels
AT irinagraur extractionoftangentialmomentumandnormalenergyaccommodationcoefficientsbycomparingvariationalsolutionsoftheboltzmannequationwithexperimentsonthermalcreepgasflowinmicrochannels
AT silvialorenzani extractionoftangentialmomentumandnormalenergyaccommodationcoefficientsbycomparingvariationalsolutionsoftheboltzmannequationwithexperimentsonthermalcreepgasflowinmicrochannels