Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels
In the present paper, we provide an analytical expression for the first- and second-order thermal slip coefficients, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-12-01
|
Series: | Fluids |
Subjects: | |
Online Access: | https://www.mdpi.com/2311-5521/6/12/445 |
_version_ | 1797504777378070528 |
---|---|
author | Tommaso Missoni Hiroki Yamaguchi Irina Graur Silvia Lorenzani |
author_facet | Tommaso Missoni Hiroki Yamaguchi Irina Graur Silvia Lorenzani |
author_sort | Tommaso Missoni |
collection | DOAJ |
description | In the present paper, we provide an analytical expression for the first- and second-order thermal slip coefficients, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>T</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>T</mi></mrow></msub></semantics></math></inline-formula>, by means of a variational technique that applies to the integrodifferential form of the Boltzmann equation based on the true linearized collision operator for hard-sphere molecules. The Cercignani-Lampis scattering kernel of the gas-surface interaction has been considered in order to take into account the influence of the accommodation coefficients (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>) on the slip parameters. Comparing our theoretical results with recent experimental data on the mass flow rate and the slip coefficient for five noble gases (helium, neon, argon, krypton, and xenon), we found out that there is a continuous set of values for the pair (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>) which leads to the same thermal slip parameters. To uniquely determine the accommodation coefficients, we took into account a further series of measurements carried out with the same experimental apparatus, where the thermal molecular pressure exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> has been also evaluated. Therefore, the new method proposed in the present work for extracting the accommodation coefficients relies on two steps. First of all, since <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> mainly depends on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, we fix the tangential momentum accommodation coefficient in such a way as to obtain a fair agreement between theoretical and experimental results. Then, among the multiple pairs of variational solutions for (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>), giving the same thermal slip coefficients (chosen to closely approximate the measurements), we select the unique pair with the previously determined value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>. The analysis carried out in the present work confirms that both accommodation coefficients increase by increasing the molecular weight of the considered gases, as already highlighted in the literature. |
first_indexed | 2024-03-10T04:09:11Z |
format | Article |
id | doaj.art-6b63057ac77347fb99b3f2b9751f44fa |
institution | Directory Open Access Journal |
issn | 2311-5521 |
language | English |
last_indexed | 2024-03-10T04:09:11Z |
publishDate | 2021-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Fluids |
spelling | doaj.art-6b63057ac77347fb99b3f2b9751f44fa2023-11-23T08:15:35ZengMDPI AGFluids2311-55212021-12-0161244510.3390/fluids6120445Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in MicrochannelsTommaso Missoni0Hiroki Yamaguchi1Irina Graur2Silvia Lorenzani3Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, ItalyDepartment of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Aichi, JapanAix-Marseille Université, CNRS IUSTI UMR 7343, 5 Rue Enrico Fermi, 13453 Marseille, FranceDipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, ItalyIn the present paper, we provide an analytical expression for the first- and second-order thermal slip coefficients, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>T</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>σ</mi><mrow><mn>2</mn><mo>,</mo><mi>T</mi></mrow></msub></semantics></math></inline-formula>, by means of a variational technique that applies to the integrodifferential form of the Boltzmann equation based on the true linearized collision operator for hard-sphere molecules. The Cercignani-Lampis scattering kernel of the gas-surface interaction has been considered in order to take into account the influence of the accommodation coefficients (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>) on the slip parameters. Comparing our theoretical results with recent experimental data on the mass flow rate and the slip coefficient for five noble gases (helium, neon, argon, krypton, and xenon), we found out that there is a continuous set of values for the pair (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>) which leads to the same thermal slip parameters. To uniquely determine the accommodation coefficients, we took into account a further series of measurements carried out with the same experimental apparatus, where the thermal molecular pressure exponent <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> has been also evaluated. Therefore, the new method proposed in the present work for extracting the accommodation coefficients relies on two steps. First of all, since <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> mainly depends on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, we fix the tangential momentum accommodation coefficient in such a way as to obtain a fair agreement between theoretical and experimental results. Then, among the multiple pairs of variational solutions for (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>n</mi></msub></semantics></math></inline-formula>), giving the same thermal slip coefficients (chosen to closely approximate the measurements), we select the unique pair with the previously determined value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mi>t</mi></msub></semantics></math></inline-formula>. The analysis carried out in the present work confirms that both accommodation coefficients increase by increasing the molecular weight of the considered gases, as already highlighted in the literature.https://www.mdpi.com/2311-5521/6/12/445Boltzmann equationhard-sphere moleculesCercignani-Lampis scattering kernelthermal slip coefficientsthermal molecular pressure exponent |
spellingShingle | Tommaso Missoni Hiroki Yamaguchi Irina Graur Silvia Lorenzani Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels Fluids Boltzmann equation hard-sphere molecules Cercignani-Lampis scattering kernel thermal slip coefficients thermal molecular pressure exponent |
title | Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels |
title_full | Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels |
title_fullStr | Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels |
title_full_unstemmed | Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels |
title_short | Extraction of Tangential Momentum and Normal Energy Accommodation Coefficients by Comparing Variational Solutions of the Boltzmann Equation with Experiments on Thermal Creep Gas Flow in Microchannels |
title_sort | extraction of tangential momentum and normal energy accommodation coefficients by comparing variational solutions of the boltzmann equation with experiments on thermal creep gas flow in microchannels |
topic | Boltzmann equation hard-sphere molecules Cercignani-Lampis scattering kernel thermal slip coefficients thermal molecular pressure exponent |
url | https://www.mdpi.com/2311-5521/6/12/445 |
work_keys_str_mv | AT tommasomissoni extractionoftangentialmomentumandnormalenergyaccommodationcoefficientsbycomparingvariationalsolutionsoftheboltzmannequationwithexperimentsonthermalcreepgasflowinmicrochannels AT hirokiyamaguchi extractionoftangentialmomentumandnormalenergyaccommodationcoefficientsbycomparingvariationalsolutionsoftheboltzmannequationwithexperimentsonthermalcreepgasflowinmicrochannels AT irinagraur extractionoftangentialmomentumandnormalenergyaccommodationcoefficientsbycomparingvariationalsolutionsoftheboltzmannequationwithexperimentsonthermalcreepgasflowinmicrochannels AT silvialorenzani extractionoftangentialmomentumandnormalenergyaccommodationcoefficientsbycomparingvariationalsolutionsoftheboltzmannequationwithexperimentsonthermalcreepgasflowinmicrochannels |