EfficientUNetViT: Efficient Breast Tumor Segmentation Utilizing UNet Architecture and Pretrained Vision Transformer
This study introduces a sophisticated neural network structure for segmenting breast tumors. It achieves this by combining a pretrained Vision Transformer (ViT) model with a UNet framework. The UNet architecture, commonly employed for biomedical image segmentation, is further enhanced with depthwise...
Asıl Yazarlar: | Shokofeh Anari, Gabriel Gomes de Oliveira, Ramin Ranjbarzadeh, Angela Maria Alves, Gabriel Caumo Vaz, Malika Bendechache |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
MDPI AG
2024-09-01
|
Seri Bilgileri: | Bioengineering |
Konular: | |
Online Erişim: | https://www.mdpi.com/2306-5354/11/9/945 |
Benzer Materyaller
-
Explainable attention based breast tumor segmentation using a combination of UNet, ResNet, DenseNet, and EfficientNet models
Yazar:: Shokofeh Anari, ve diğerleri
Baskı/Yayın Bilgisi: (2025-01-01) -
ConvWin-UNet: UNet-like hierarchical vision Transformer combined with convolution for medical image segmentation
Yazar:: Xiaomeng Feng, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
DFA-UNet: Efficient Railroad Image Segmentation
Yazar:: Yan Zhang, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
SEF-UNet: advancing abdominal multi-organ segmentation with SEFormer and depthwise cascaded upsampling
Yazar:: Yaping Zhao, ve diğerleri
Baskı/Yayın Bilgisi: (2024-08-01) -
Depthwise separable convolution Unet for 3D seismic data interpolation
Yazar:: Zhenhui Jin, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01)