An autoencoder for heterotic orbifolds with arbitrary geometry

Artificial neural networks can be an important tool to improve the search for admissible string compactifications and characterize them. In this paper we construct the heterotic orbiencoder , a general deep autoencoder to study heterotic orbifold models arising from various Abelian orbifold geometri...

Full description

Bibliographic Details
Main Authors: Enrique Escalante–Notario, Ignacio Portillo–Castillo, Saúl Ramos–Sánchez
Format: Article
Language:English
Published: IOP Publishing 2024-01-01
Series:Journal of Physics Communications
Subjects:
Online Access:https://doi.org/10.1088/2399-6528/ad246f
_version_ 1797319215234940928
author Enrique Escalante–Notario
Ignacio Portillo–Castillo
Saúl Ramos–Sánchez
author_facet Enrique Escalante–Notario
Ignacio Portillo–Castillo
Saúl Ramos–Sánchez
author_sort Enrique Escalante–Notario
collection DOAJ
description Artificial neural networks can be an important tool to improve the search for admissible string compactifications and characterize them. In this paper we construct the heterotic orbiencoder , a general deep autoencoder to study heterotic orbifold models arising from various Abelian orbifold geometries. Our neural network can be easily trained to successfully encode the large parameter space of many orbifold geometries simultaneously, independently of the statistical dissimilarities of their training features. In particular, we show that our autoencoder is capable of compressing with good accuracy the large parameter space of two promising orbifold geometries in just three parameters. Further, most orbifold models with phenomenologically appealing features appear in bounded regions of this small space. Our results hint towards a possible simplification of the classification of (promising) heterotic orbifold models.
first_indexed 2024-03-08T04:03:36Z
format Article
id doaj.art-6b6b4ff8c5fd4189ac3d92150127eabd
institution Directory Open Access Journal
issn 2399-6528
language English
last_indexed 2024-03-08T04:03:36Z
publishDate 2024-01-01
publisher IOP Publishing
record_format Article
series Journal of Physics Communications
spelling doaj.art-6b6b4ff8c5fd4189ac3d92150127eabd2024-02-09T09:35:03ZengIOP PublishingJournal of Physics Communications2399-65282024-01-018202500310.1088/2399-6528/ad246fAn autoencoder for heterotic orbifolds with arbitrary geometryEnrique Escalante–Notario0https://orcid.org/0000-0001-9748-853XIgnacio Portillo–Castillo1https://orcid.org/0000-0002-5807-9124Saúl Ramos–Sánchez2https://orcid.org/0000-0002-2643-2093Instituto de Física, Universidad Nacional Autónoma de México , POB 20-364, Cd.Mx. 01000, MexicoInstituto de Física, Universidad Nacional Autónoma de México , POB 20-364, Cd.Mx. 01000, Mexico; Facultad de Ingeniería Universidad Autónoma de Chihuahua, Nuevo Campus Universitario , Chihuahua 31125, MexicoInstituto de Física, Universidad Nacional Autónoma de México , POB 20-364, Cd.Mx. 01000, MexicoArtificial neural networks can be an important tool to improve the search for admissible string compactifications and characterize them. In this paper we construct the heterotic orbiencoder , a general deep autoencoder to study heterotic orbifold models arising from various Abelian orbifold geometries. Our neural network can be easily trained to successfully encode the large parameter space of many orbifold geometries simultaneously, independently of the statistical dissimilarities of their training features. In particular, we show that our autoencoder is capable of compressing with good accuracy the large parameter space of two promising orbifold geometries in just three parameters. Further, most orbifold models with phenomenologically appealing features appear in bounded regions of this small space. Our results hint towards a possible simplification of the classification of (promising) heterotic orbifold models.https://doi.org/10.1088/2399-6528/ad246fautoencoderorbifold modelsstring theory
spellingShingle Enrique Escalante–Notario
Ignacio Portillo–Castillo
Saúl Ramos–Sánchez
An autoencoder for heterotic orbifolds with arbitrary geometry
Journal of Physics Communications
autoencoder
orbifold models
string theory
title An autoencoder for heterotic orbifolds with arbitrary geometry
title_full An autoencoder for heterotic orbifolds with arbitrary geometry
title_fullStr An autoencoder for heterotic orbifolds with arbitrary geometry
title_full_unstemmed An autoencoder for heterotic orbifolds with arbitrary geometry
title_short An autoencoder for heterotic orbifolds with arbitrary geometry
title_sort autoencoder for heterotic orbifolds with arbitrary geometry
topic autoencoder
orbifold models
string theory
url https://doi.org/10.1088/2399-6528/ad246f
work_keys_str_mv AT enriqueescalantenotario anautoencoderforheteroticorbifoldswitharbitrarygeometry
AT ignacioportillocastillo anautoencoderforheteroticorbifoldswitharbitrarygeometry
AT saulramossanchez anautoencoderforheteroticorbifoldswitharbitrarygeometry
AT enriqueescalantenotario autoencoderforheteroticorbifoldswitharbitrarygeometry
AT ignacioportillocastillo autoencoderforheteroticorbifoldswitharbitrarygeometry
AT saulramossanchez autoencoderforheteroticorbifoldswitharbitrarygeometry