Ultra-Narrow SPP Generation from Ag Grating
In this study, we investigate the potential of one-dimensional plasmonic grating structures to serve as a platform for, e.g., sensitive refractive index sensing. This is achieved by comparing numerical simulations to experimental results with respect to the excitation of surface plasmon polaritons (...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-10-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/21/6993 |
_version_ | 1797511780227874816 |
---|---|
author | Gerald Stocker Jasmin Spettel Thang Duy Dao Andreas Tortschanoff Reyhaneh Jannesari Gerald Pühringer Parviz Saeidi Florian Dubois Clement Fleury Cristina Consani Thomas Grille Elmar Aschauer Bernhard Jakoby |
author_facet | Gerald Stocker Jasmin Spettel Thang Duy Dao Andreas Tortschanoff Reyhaneh Jannesari Gerald Pühringer Parviz Saeidi Florian Dubois Clement Fleury Cristina Consani Thomas Grille Elmar Aschauer Bernhard Jakoby |
author_sort | Gerald Stocker |
collection | DOAJ |
description | In this study, we investigate the potential of one-dimensional plasmonic grating structures to serve as a platform for, e.g., sensitive refractive index sensing. This is achieved by comparing numerical simulations to experimental results with respect to the excitation of surface plasmon polaritons (SPPs) in the mid-infrared region. The samples, silver-coated poly-silicon gratings, cover different grating depths in the range of 50 nm–375 nm. This variation of the depth, at a fixed grating geometry, allows the active tuning of the bandwidth of the SPP resonance according to the requirements of particular applications. The experimental setup employs a tunable quantum cascade laser (QCL) and allows the retrieval of angle-resolved experimental wavelength spectra to characterize the wavelength and angle dependence of the SPP resonance of the specular reflectance. The experimental results are in good agreement with the simulations. As a tendency, shallower gratings reveal narrower SPP resonances in reflection. In particular, we report on 2.9 nm full width at half maximum (FWHM) at a wavelength of 4.12 µm and a signal attenuation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>21</mn><mo>%</mo></mrow></semantics></math></inline-formula>. According to a numerical investigation with respect to a change of the refractive index of the dielectric above the grating structure, a spectral shift of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4122</mn><mspace width="0.166667em"></mspace><mfrac><mi>nm</mi><mi>RIU</mi></mfrac></mrow></semantics></math></inline-formula> can be expected, which translates to a figure of merit (FOM) of about 1421 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>RIU</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. The fabrication of the suggested structures is performed on eight-inch silicon substrates, entirely accomplished within an industrial fabrication environment using standard microfabrication processes. This in turn represents a decisive step towards plasmonic sensor technologies suitable for semiconductor mass-production. |
first_indexed | 2024-03-10T05:52:55Z |
format | Article |
id | doaj.art-6b7da9e9e93644d28e1ec53e9f9ab677 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-10T05:52:55Z |
publishDate | 2021-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-6b7da9e9e93644d28e1ec53e9f9ab6772023-11-22T21:34:59ZengMDPI AGSensors1424-82202021-10-012121699310.3390/s21216993Ultra-Narrow SPP Generation from Ag GratingGerald Stocker0Jasmin Spettel1Thang Duy Dao2Andreas Tortschanoff3Reyhaneh Jannesari4Gerald Pühringer5Parviz Saeidi6Florian Dubois7Clement Fleury8Cristina Consani9Thomas Grille10Elmar Aschauer11Bernhard Jakoby12Infineon Technologies Austria AG, 9500 Villach, AustriaInfineon Technologies Austria AG, 9500 Villach, AustriaSilicon Austria Labs GmbH, 9524 Villach, AustriaSilicon Austria Labs GmbH, 9524 Villach, AustriaInstitute of Microelectronics and Micro Sensoric, Johannes Kepler University Linz, 4040 Linz, AustriaInstitute of Microelectronics and Micro Sensoric, Johannes Kepler University Linz, 4040 Linz, AustriaInstitute of Microelectronics and Micro Sensoric, Johannes Kepler University Linz, 4040 Linz, AustriaSilicon Austria Labs GmbH, 9524 Villach, AustriaSilicon Austria Labs GmbH, 9524 Villach, AustriaSilicon Austria Labs GmbH, 9524 Villach, AustriaInfineon Technologies Austria AG, 9500 Villach, AustriaInfineon Technologies Austria AG, 9500 Villach, AustriaInstitute of Microelectronics and Micro Sensoric, Johannes Kepler University Linz, 4040 Linz, AustriaIn this study, we investigate the potential of one-dimensional plasmonic grating structures to serve as a platform for, e.g., sensitive refractive index sensing. This is achieved by comparing numerical simulations to experimental results with respect to the excitation of surface plasmon polaritons (SPPs) in the mid-infrared region. The samples, silver-coated poly-silicon gratings, cover different grating depths in the range of 50 nm–375 nm. This variation of the depth, at a fixed grating geometry, allows the active tuning of the bandwidth of the SPP resonance according to the requirements of particular applications. The experimental setup employs a tunable quantum cascade laser (QCL) and allows the retrieval of angle-resolved experimental wavelength spectra to characterize the wavelength and angle dependence of the SPP resonance of the specular reflectance. The experimental results are in good agreement with the simulations. As a tendency, shallower gratings reveal narrower SPP resonances in reflection. In particular, we report on 2.9 nm full width at half maximum (FWHM) at a wavelength of 4.12 µm and a signal attenuation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>21</mn><mo>%</mo></mrow></semantics></math></inline-formula>. According to a numerical investigation with respect to a change of the refractive index of the dielectric above the grating structure, a spectral shift of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4122</mn><mspace width="0.166667em"></mspace><mfrac><mi>nm</mi><mi>RIU</mi></mfrac></mrow></semantics></math></inline-formula> can be expected, which translates to a figure of merit (FOM) of about 1421 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>RIU</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. The fabrication of the suggested structures is performed on eight-inch silicon substrates, entirely accomplished within an industrial fabrication environment using standard microfabrication processes. This in turn represents a decisive step towards plasmonic sensor technologies suitable for semiconductor mass-production.https://www.mdpi.com/1424-8220/21/21/6993surface plasmon polaritonsrefractive index sensingreflection measurementplasmonic grating |
spellingShingle | Gerald Stocker Jasmin Spettel Thang Duy Dao Andreas Tortschanoff Reyhaneh Jannesari Gerald Pühringer Parviz Saeidi Florian Dubois Clement Fleury Cristina Consani Thomas Grille Elmar Aschauer Bernhard Jakoby Ultra-Narrow SPP Generation from Ag Grating Sensors surface plasmon polaritons refractive index sensing reflection measurement plasmonic grating |
title | Ultra-Narrow SPP Generation from Ag Grating |
title_full | Ultra-Narrow SPP Generation from Ag Grating |
title_fullStr | Ultra-Narrow SPP Generation from Ag Grating |
title_full_unstemmed | Ultra-Narrow SPP Generation from Ag Grating |
title_short | Ultra-Narrow SPP Generation from Ag Grating |
title_sort | ultra narrow spp generation from ag grating |
topic | surface plasmon polaritons refractive index sensing reflection measurement plasmonic grating |
url | https://www.mdpi.com/1424-8220/21/21/6993 |
work_keys_str_mv | AT geraldstocker ultranarrowsppgenerationfromaggrating AT jasminspettel ultranarrowsppgenerationfromaggrating AT thangduydao ultranarrowsppgenerationfromaggrating AT andreastortschanoff ultranarrowsppgenerationfromaggrating AT reyhanehjannesari ultranarrowsppgenerationfromaggrating AT geraldpuhringer ultranarrowsppgenerationfromaggrating AT parvizsaeidi ultranarrowsppgenerationfromaggrating AT floriandubois ultranarrowsppgenerationfromaggrating AT clementfleury ultranarrowsppgenerationfromaggrating AT cristinaconsani ultranarrowsppgenerationfromaggrating AT thomasgrille ultranarrowsppgenerationfromaggrating AT elmaraschauer ultranarrowsppgenerationfromaggrating AT bernhardjakoby ultranarrowsppgenerationfromaggrating |