The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralo...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2019-08-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/46754 |
_version_ | 1818019936387203072 |
---|---|
author | Axelle Marchant Angel F Cisneros Alexandre K Dubé Isabelle Gagnon-Arsenault Diana Ascencio Honey Jain Simon Aubé Chris Eberlein Daniel Evans-Yamamoto Nozomu Yachie Christian R Landry |
author_facet | Axelle Marchant Angel F Cisneros Alexandre K Dubé Isabelle Gagnon-Arsenault Diana Ascencio Honey Jain Simon Aubé Chris Eberlein Daniel Evans-Yamamoto Nozomu Yachie Christian R Landry |
author_sort | Axelle Marchant |
collection | DOAJ |
description | Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels. |
first_indexed | 2024-04-14T07:58:21Z |
format | Article |
id | doaj.art-6b83d7141d3b43048d05a6d3e0b5f734 |
institution | Directory Open Access Journal |
issn | 2050-084X |
language | English |
last_indexed | 2024-04-14T07:58:21Z |
publishDate | 2019-08-01 |
publisher | eLife Sciences Publications Ltd |
record_format | Article |
series | eLife |
spelling | doaj.art-6b83d7141d3b43048d05a6d3e0b5f7342022-12-22T02:04:58ZengeLife Sciences Publications LtdeLife2050-084X2019-08-01810.7554/eLife.46754The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogsAxelle Marchant0https://orcid.org/0000-0001-7134-9769Angel F Cisneros1https://orcid.org/0000-0002-2030-3653Alexandre K Dubé2https://orcid.org/0000-0001-8718-9894Isabelle Gagnon-Arsenault3https://orcid.org/0000-0003-2661-1929Diana Ascencio4https://orcid.org/0000-0003-4808-1244Honey Jain5https://orcid.org/0000-0002-1737-9833Simon Aubé6https://orcid.org/0000-0002-7078-6227Chris Eberlein7https://orcid.org/0000-0002-8269-5525Daniel Evans-Yamamoto8https://orcid.org/0000-0001-6467-3827Nozomu Yachie9https://orcid.org/0000-0003-1582-6027Christian R Landry10https://orcid.org/0000-0003-3028-6866Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, IndiaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, CanadaPROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, JapanResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, JapanDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaGene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.https://elifesciences.org/articles/46754gene duplicationprotein interaction networkspleiotropyregulatory evolutionepistasis |
spellingShingle | Axelle Marchant Angel F Cisneros Alexandre K Dubé Isabelle Gagnon-Arsenault Diana Ascencio Honey Jain Simon Aubé Chris Eberlein Daniel Evans-Yamamoto Nozomu Yachie Christian R Landry The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs eLife gene duplication protein interaction networks pleiotropy regulatory evolution epistasis |
title | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_full | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_fullStr | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_full_unstemmed | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_short | The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
title_sort | role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs |
topic | gene duplication protein interaction networks pleiotropy regulatory evolution epistasis |
url | https://elifesciences.org/articles/46754 |
work_keys_str_mv | AT axellemarchant theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT angelfcisneros theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT alexandrekdube theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT isabellegagnonarsenault theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT dianaascencio theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT honeyjain theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT simonaube theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT chriseberlein theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT danielevansyamamoto theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT nozomuyachie theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT christianrlandry theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT axellemarchant roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT angelfcisneros roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT alexandrekdube roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT isabellegagnonarsenault roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT dianaascencio roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT honeyjain roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT simonaube roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT chriseberlein roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT danielevansyamamoto roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT nozomuyachie roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs AT christianrlandry roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs |