The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs

Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralo...

Full description

Bibliographic Details
Main Authors: Axelle Marchant, Angel F Cisneros, Alexandre K Dubé, Isabelle Gagnon-Arsenault, Diana Ascencio, Honey Jain, Simon Aubé, Chris Eberlein, Daniel Evans-Yamamoto, Nozomu Yachie, Christian R Landry
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2019-08-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/46754
_version_ 1818019936387203072
author Axelle Marchant
Angel F Cisneros
Alexandre K Dubé
Isabelle Gagnon-Arsenault
Diana Ascencio
Honey Jain
Simon Aubé
Chris Eberlein
Daniel Evans-Yamamoto
Nozomu Yachie
Christian R Landry
author_facet Axelle Marchant
Angel F Cisneros
Alexandre K Dubé
Isabelle Gagnon-Arsenault
Diana Ascencio
Honey Jain
Simon Aubé
Chris Eberlein
Daniel Evans-Yamamoto
Nozomu Yachie
Christian R Landry
author_sort Axelle Marchant
collection DOAJ
description Gene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.
first_indexed 2024-04-14T07:58:21Z
format Article
id doaj.art-6b83d7141d3b43048d05a6d3e0b5f734
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-14T07:58:21Z
publishDate 2019-08-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-6b83d7141d3b43048d05a6d3e0b5f7342022-12-22T02:04:58ZengeLife Sciences Publications LtdeLife2050-084X2019-08-01810.7554/eLife.46754The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogsAxelle Marchant0https://orcid.org/0000-0001-7134-9769Angel F Cisneros1https://orcid.org/0000-0002-2030-3653Alexandre K Dubé2https://orcid.org/0000-0001-8718-9894Isabelle Gagnon-Arsenault3https://orcid.org/0000-0003-2661-1929Diana Ascencio4https://orcid.org/0000-0003-4808-1244Honey Jain5https://orcid.org/0000-0002-1737-9833Simon Aubé6https://orcid.org/0000-0002-7078-6227Chris Eberlein7https://orcid.org/0000-0002-8269-5525Daniel Evans-Yamamoto8https://orcid.org/0000-0001-6467-3827Nozomu Yachie9https://orcid.org/0000-0003-1582-6027Christian R Landry10https://orcid.org/0000-0003-3028-6866Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, IndiaDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, CanadaPROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, JapanResearch Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, JapanDépartement de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; PROTEO, le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada; Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada; Département de biologie, Université Laval, Québec, CanadaGene duplication is a driver of the evolution of new functions. The duplication of genes encoding homomeric proteins leads to the formation of homomers and heteromers of paralogs, creating new complexes after a single duplication event. The loss of these heteromers may be required for the two paralogs to evolve independent functions. Using yeast as a model, we find that heteromerization is frequent among duplicated homomers and correlates with functional similarity between paralogs. Using in silico evolution, we show that for homomers and heteromers sharing binding interfaces, mutations in one paralog can have structural pleiotropic effects on both interactions, resulting in highly correlated responses of the complexes to selection. Therefore, heteromerization could be preserved indirectly due to selection for the maintenance of homomers, thus slowing down functional divergence between paralogs. We suggest that paralogs can overcome the obstacle of structural pleiotropy by regulatory evolution at the transcriptional and post-translational levels.https://elifesciences.org/articles/46754gene duplicationprotein interaction networkspleiotropyregulatory evolutionepistasis
spellingShingle Axelle Marchant
Angel F Cisneros
Alexandre K Dubé
Isabelle Gagnon-Arsenault
Diana Ascencio
Honey Jain
Simon Aubé
Chris Eberlein
Daniel Evans-Yamamoto
Nozomu Yachie
Christian R Landry
The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
eLife
gene duplication
protein interaction networks
pleiotropy
regulatory evolution
epistasis
title The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_full The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_fullStr The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_full_unstemmed The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_short The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
title_sort role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs
topic gene duplication
protein interaction networks
pleiotropy
regulatory evolution
epistasis
url https://elifesciences.org/articles/46754
work_keys_str_mv AT axellemarchant theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT angelfcisneros theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT alexandrekdube theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT isabellegagnonarsenault theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT dianaascencio theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT honeyjain theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT simonaube theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT chriseberlein theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT danielevansyamamoto theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT nozomuyachie theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT christianrlandry theroleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT axellemarchant roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT angelfcisneros roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT alexandrekdube roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT isabellegagnonarsenault roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT dianaascencio roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT honeyjain roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT simonaube roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT chriseberlein roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT danielevansyamamoto roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT nozomuyachie roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs
AT christianrlandry roleofstructuralpleiotropyandregulatoryevolutionintheretentionofheteromersofparalogs