Development and validation of a machine learning model integrated with the clinical workflow for early detection of sepsis

BackgroundSepsis is a life-threatening condition caused by a dysregulated response to infection, affecting millions of people worldwide. Early diagnosis and treatment are critical for managing sepsis and reducing morbidity and mortality rates.Materials and methodsA systematic design approach was emp...

Full description

Bibliographic Details
Main Authors: Mohammed A. Mahyoub, Ravi R. Yadav, Kacie Dougherty, Ajit Shukla
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-11-01
Series:Frontiers in Medicine
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmed.2023.1284081/full
Description
Summary:BackgroundSepsis is a life-threatening condition caused by a dysregulated response to infection, affecting millions of people worldwide. Early diagnosis and treatment are critical for managing sepsis and reducing morbidity and mortality rates.Materials and methodsA systematic design approach was employed to build a model that predicts sepsis, incorporating clinical feedback to identify relevant data elements. XGBoost was utilized for prediction, and interpretability was achieved through the application of Shapley values. The model was successfully deployed within a widely used Electronic Medical Record (EMR) system.ResultsThe developed model demonstrated robust performance pre-operations, with a sensitivity of 92%, specificity of 93%, and a false positive rate of 7%. Following deployment, the model maintained comparable performance, with a sensitivity of 91% and specificity of 94%. Notably, the post-deployment false positive rate of 6% represents a substantial reduction compared to the currently deployed commercial model in the same health system, which exhibits a false positive rate of 30%.DiscussionThese findings underscore the effectiveness and potential value of the developed model in improving timely sepsis detection and reducing unnecessary alerts in clinical practice. Further investigations should focus on its long-term generalizability and impact on patient outcomes.
ISSN:2296-858X