Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer

The controlled deposition of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math>...

Full description

Bibliographic Details
Main Authors: Molong Han, Ashok Meghwal, Soon Hock Ng, Daniel Smith, Haoran Mu, Tomas Katkus, De Ming Zhu, Reiza Mukhlis, Jitraporn Vongsvivut, Christopher C. Berndt, Andrew S. M. Ang, Saulius Juodkazis
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/22/8063
Description
Summary:The controlled deposition of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula> high-entropy alloy (HEA) microparticles was achieved by using laser-induced forward transfer (LIFT). Ultra-short laser pulses of 230 fs of 515 nm wavelength were tightly focused into ∼2.4 μm focal spots on the ∼50-nm thick plasma-sputtered films of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula>. The morphology of HEA microparticles can be controlled at different fluences. The HEA films were transferred onto glass substrates by magnetron sputtering in a vacuum (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></semantics></math></inline-formula> atm) from the thermal spray-coated substrates. The absorption coefficient of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>≈</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was determined at 600-nm wavelength. The real and imaginary parts of the refractive index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>i</mi><mi>κ</mi><mo>)</mo></mrow></semantics></math></inline-formula> of HEA were determined from reflectance and transmittance by using nanofilms.
ISSN:1996-1944