Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer

The controlled deposition of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math>...

Full description

Bibliographic Details
Main Authors: Molong Han, Ashok Meghwal, Soon Hock Ng, Daniel Smith, Haoran Mu, Tomas Katkus, De Ming Zhu, Reiza Mukhlis, Jitraporn Vongsvivut, Christopher C. Berndt, Andrew S. M. Ang, Saulius Juodkazis
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/22/8063
_version_ 1797464758530605056
author Molong Han
Ashok Meghwal
Soon Hock Ng
Daniel Smith
Haoran Mu
Tomas Katkus
De Ming Zhu
Reiza Mukhlis
Jitraporn Vongsvivut
Christopher C. Berndt
Andrew S. M. Ang
Saulius Juodkazis
author_facet Molong Han
Ashok Meghwal
Soon Hock Ng
Daniel Smith
Haoran Mu
Tomas Katkus
De Ming Zhu
Reiza Mukhlis
Jitraporn Vongsvivut
Christopher C. Berndt
Andrew S. M. Ang
Saulius Juodkazis
author_sort Molong Han
collection DOAJ
description The controlled deposition of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula> high-entropy alloy (HEA) microparticles was achieved by using laser-induced forward transfer (LIFT). Ultra-short laser pulses of 230 fs of 515 nm wavelength were tightly focused into ∼2.4 μm focal spots on the ∼50-nm thick plasma-sputtered films of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula>. The morphology of HEA microparticles can be controlled at different fluences. The HEA films were transferred onto glass substrates by magnetron sputtering in a vacuum (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></semantics></math></inline-formula> atm) from the thermal spray-coated substrates. The absorption coefficient of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>≈</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was determined at 600-nm wavelength. The real and imaginary parts of the refractive index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>i</mi><mi>κ</mi><mo>)</mo></mrow></semantics></math></inline-formula> of HEA were determined from reflectance and transmittance by using nanofilms.
first_indexed 2024-03-09T18:11:48Z
format Article
id doaj.art-6b88a0e7004f4def839e5d6436d65a04
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-09T18:11:48Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-6b88a0e7004f4def839e5d6436d65a042023-11-24T09:03:30ZengMDPI AGMaterials1996-19442022-11-011522806310.3390/ma15228063Microparticles of High Entropy Alloys Made by Laser-Induced Forward TransferMolong Han0Ashok Meghwal1Soon Hock Ng2Daniel Smith3Haoran Mu4Tomas Katkus5De Ming Zhu6Reiza Mukhlis7Jitraporn Vongsvivut8Christopher C. Berndt9Andrew S. M. Ang10Saulius Juodkazis11Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaAustralian Research Council (ARC) Industrial Transformation Training Centre on Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaOptical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaOptical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaOptical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaOptical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaAcademic Operations Unit, Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaAcademic Operations Unit, Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaANSTO-Australian Synchrotron, Infrared Microspectroscopy (IRM) Beamline, 800 Blackburn Road, Clayton, VIC 3168, AustraliaAustralian Research Council (ARC) Industrial Transformation Training Centre on Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaAustralian Research Council (ARC) Industrial Transformation Training Centre on Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaOptical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, AustraliaThe controlled deposition of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula> high-entropy alloy (HEA) microparticles was achieved by using laser-induced forward transfer (LIFT). Ultra-short laser pulses of 230 fs of 515 nm wavelength were tightly focused into ∼2.4 μm focal spots on the ∼50-nm thick plasma-sputtered films of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula>. The morphology of HEA microparticles can be controlled at different fluences. The HEA films were transferred onto glass substrates by magnetron sputtering in a vacuum (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></semantics></math></inline-formula> atm) from the thermal spray-coated substrates. The absorption coefficient of CoCrFeNiMo<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>0.2</mn></mrow></msub></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>≈</mo><mn>6</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></semantics></math></inline-formula> cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> was determined at 600-nm wavelength. The real and imaginary parts of the refractive index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>i</mi><mi>κ</mi><mo>)</mo></mrow></semantics></math></inline-formula> of HEA were determined from reflectance and transmittance by using nanofilms.https://www.mdpi.com/1996-1944/15/22/8063laser-induced forward transferhigh-entropy alloysmicroparticles
spellingShingle Molong Han
Ashok Meghwal
Soon Hock Ng
Daniel Smith
Haoran Mu
Tomas Katkus
De Ming Zhu
Reiza Mukhlis
Jitraporn Vongsvivut
Christopher C. Berndt
Andrew S. M. Ang
Saulius Juodkazis
Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer
Materials
laser-induced forward transfer
high-entropy alloys
microparticles
title Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer
title_full Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer
title_fullStr Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer
title_full_unstemmed Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer
title_short Microparticles of High Entropy Alloys Made by Laser-Induced Forward Transfer
title_sort microparticles of high entropy alloys made by laser induced forward transfer
topic laser-induced forward transfer
high-entropy alloys
microparticles
url https://www.mdpi.com/1996-1944/15/22/8063
work_keys_str_mv AT molonghan microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT ashokmeghwal microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT soonhockng microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT danielsmith microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT haoranmu microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT tomaskatkus microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT demingzhu microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT reizamukhlis microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT jitrapornvongsvivut microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT christophercberndt microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT andrewsmang microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer
AT sauliusjuodkazis microparticlesofhighentropyalloysmadebylaserinducedforwardtransfer