Topological holography: The example of the D2-D4 brane system

We propose a toy model for holographic duality. The model is constructed by embedding a stack of $N$ D2-branes and $K$ D4-branes (with one dimensional intersection) in a 6D topological string theory. The world-volume theory on the D2-branes (resp. D4-branes) is 2D BF theory (resp. 4D Chern-Simons...

Full description

Bibliographic Details
Main Author: Nafiz Ishtiaque, Seyed Faroogh Moosavian, Yehao Zhou
Format: Article
Language:English
Published: SciPost 2020-08-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.9.2.017
Description
Summary:We propose a toy model for holographic duality. The model is constructed by embedding a stack of $N$ D2-branes and $K$ D4-branes (with one dimensional intersection) in a 6D topological string theory. The world-volume theory on the D2-branes (resp. D4-branes) is 2D BF theory (resp. 4D Chern-Simons theory) with $\mathrm{GL}_N$ (resp. $\mathrm{GL}_K$) gauge group. We propose that in the large $N$ limit the BF theory on $\mathbb{R}^2$ is dual to the closed string theory on $\mathbb R^2 \times \mathbb R_+ \times S^3$ with the Chern-Simons defect on $\mathbb R \times \mathbb R_+ \times S^2$. As a check for the duality we compute the operator algebra in the BF theory, along the D2-D4 intersection -- the algebra is the Yangian of $\mathfrak{gl}_K$. We then compute the same algebra, in the guise of a scattering algebra, using Witten diagrams in the Chern-Simons theory. Our computations of the algebras are exact (valid at all loops). Finally, we propose a physical string theory construction of this duality using a D3-D5 brane configuration in type IIB -- using supersymmetric twist and $\Omega$-deformation.
ISSN:2542-4653