Multi-Parameter Asymptotic Expansions With Errors for Multi-Dimensional Hypersingular Integrals With Product Type and Splitting Extrapolation

This paper presents the modified quadrature rules for 1-D hypersingular integrals, and then constructs the quadrature formulas to numerically evaluate multi-dimensional hypersingular integrals in the form of f .p. f.<sub>&#x03A9;</sub> g(x)/(&#x03A0;<sub>i=1</sub><...

Full description

Bibliographic Details
Main Authors: Yanying Ma, Jin Huang, Changqing Wang
Format: Article
Language:English
Published: IEEE 2017-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8094849/
Description
Summary:This paper presents the modified quadrature rules for 1-D hypersingular integrals, and then constructs the quadrature formulas to numerically evaluate multi-dimensional hypersingular integrals in the form of f .p. f.<sub>&#x03A9;</sub> g(x)/(&#x03A0;<sub>i=1</sub><sup>s</sup> |x<sub>i</sub>-t<sub>i</sub>|<sup>1+&#x03B3;</sup><sub>i</sub>) &#x03A0;<sub>i=1</sub><sup>s</sup> dx<sub>i</sub> (s &#x2265; 2) with &#x03A9; = &#x03A0;<sub>i=1</sub><sup>s</sup>[a<sub>i</sub>, b<sub>i</sub>], 0 &lt;; &#x03B3;<sub>i</sub> &#x2264; 1 and t<sub>i</sub> &#x2208; (a<sub>i</sub>, bi<sub>)</sub>. The multi-parameter asymptotic error estimates are derived for three different situations. The error estimates illustrate that, if g(x) is 2l + 1 (l &#x2265; (&#x03B3;<sub>0</sub> - 1)/2) times differentiable on the &#x03A9;, the order of convergence is O(h<sub>0</sub><sup>2k</sup> ) for &#x03B3;<sub>i</sub> = 1 (i = 1, &#x00B7; &#x00B7; &#x00B7; , s) or O(h<sub>0</sub><sup>2k-&#x03B3;0</sup>) for some 0 &lt;; &#x03B3;<sub>i</sub> &lt;; 1, (i = 1, &#x00B7; &#x00B7; &#x00B7; , p, p 0 s) and &#x03B3;<sub>p+j</sub> = 1 (j = 1, &#x00B7; &#x00B7; &#x00B7; , s - p) with &#x03B3;<sub>0</sub> = max{&#x03B3;<sub>1</sub>, &#x00B7; &#x00B7; &#x00B7; , &#x03B3;<sub>p</sub>}, h<sub>0</sub> = max{h<sub>1</sub>, &#x00B7; &#x00B7; &#x00B7; , h<sub>s</sub>}, where k is a positive integer determined by the integrand. To obtain more accurate approximate solution, the splitting extrapolation algorithms are proposed. Numerical experiments are provided to verify the theoretical estimates.
ISSN:2169-3536