Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent

Precision matrices can efficiently exhibit the correlation between variables and they have received much attention in recent years. When one encounters large datasets stored in different locations and when data sharing is not allowed, the implementation of high-dimensional precision matrix estimatio...

Full description

Bibliographic Details
Main Authors: Wei Dong, Hongzhen Liu
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/5/646
_version_ 1797264154495549440
author Wei Dong
Hongzhen Liu
author_facet Wei Dong
Hongzhen Liu
author_sort Wei Dong
collection DOAJ
description Precision matrices can efficiently exhibit the correlation between variables and they have received much attention in recent years. When one encounters large datasets stored in different locations and when data sharing is not allowed, the implementation of high-dimensional precision matrix estimation can be numerically challenging or even infeasible. In this work, we studied distributed sparse precision matrix estimation via an alternating block-based gradient descent method. We obtained a global model by aggregating each machine’s information via a communication-efficient surrogate penalized likelihood. The procedure chooses the block coordinates using the local gradient, to guide the global gradient updates, which can efficiently accelerate precision estimation and lessen communication loads on sensors. The proposed method can efficiently achieve the correct selection of non-zero elements of a sparse precision matrix. Under mild conditions, we show that the proposed estimator achieved a near-oracle convergence rate, as if the estimation had been conducted with a consolidated dataset on a single computer. The promising performance of the method was supported by both simulated and real data examples.
first_indexed 2024-04-25T00:24:23Z
format Article
id doaj.art-6ba8a497cc98402e8de8927448118ab2
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-04-25T00:24:23Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6ba8a497cc98402e8de8927448118ab22024-03-12T16:49:49ZengMDPI AGMathematics2227-73902024-02-0112564610.3390/math12050646Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient DescentWei Dong0Hongzhen Liu1School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, ChinaSchool of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, ChinaPrecision matrices can efficiently exhibit the correlation between variables and they have received much attention in recent years. When one encounters large datasets stored in different locations and when data sharing is not allowed, the implementation of high-dimensional precision matrix estimation can be numerically challenging or even infeasible. In this work, we studied distributed sparse precision matrix estimation via an alternating block-based gradient descent method. We obtained a global model by aggregating each machine’s information via a communication-efficient surrogate penalized likelihood. The procedure chooses the block coordinates using the local gradient, to guide the global gradient updates, which can efficiently accelerate precision estimation and lessen communication loads on sensors. The proposed method can efficiently achieve the correct selection of non-zero elements of a sparse precision matrix. Under mild conditions, we show that the proposed estimator achieved a near-oracle convergence rate, as if the estimation had been conducted with a consolidated dataset on a single computer. The promising performance of the method was supported by both simulated and real data examples.https://www.mdpi.com/2227-7390/12/5/646block-based gradient descentdistributed estimationhigh-dimensionalnear-oracleprecision matrix
spellingShingle Wei Dong
Hongzhen Liu
Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent
Mathematics
block-based gradient descent
distributed estimation
high-dimensional
near-oracle
precision matrix
title Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent
title_full Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent
title_fullStr Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent
title_full_unstemmed Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent
title_short Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent
title_sort distributed sparse precision matrix estimation via alternating block based gradient descent
topic block-based gradient descent
distributed estimation
high-dimensional
near-oracle
precision matrix
url https://www.mdpi.com/2227-7390/12/5/646
work_keys_str_mv AT weidong distributedsparseprecisionmatrixestimationviaalternatingblockbasedgradientdescent
AT hongzhenliu distributedsparseprecisionmatrixestimationviaalternatingblockbasedgradientdescent