Summary: | We present natural deduction systems and associated modal lambda calculi for
the necessity fragments of the normal modal logics K, T, K4, GL and S4. These
systems are in the dual-context style: they feature two distinct zones of
assumptions, one of which can be thought as modal, and the other as
intuitionistic. We show that these calculi have their roots in in sequent
calculi. We then investigate their metatheory, equip them with a confluent and
strongly normalizing notion of reduction, and show that they coincide with the
usual Hilbert systems up to provability. Finally, we investigate a categorical
semantics which interprets the modality as a product-preserving functor.
|