Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification

Over the past decades, there has been an increase of attention to adapting machine learning methods to fully exploit the higher order structure of tensorial data. One problem of great interest is tensor classification, and in particular the extension of linear discriminant analysis to the multilinea...

Full description

Bibliographic Details
Main Authors: Cristian Minoccheri, Olivia Alge, Jonathan Gryak, Kayvan Najarian, Harm Derksen
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/16/2/104
_version_ 1797622844163620864
author Cristian Minoccheri
Olivia Alge
Jonathan Gryak
Kayvan Najarian
Harm Derksen
author_facet Cristian Minoccheri
Olivia Alge
Jonathan Gryak
Kayvan Najarian
Harm Derksen
author_sort Cristian Minoccheri
collection DOAJ
description Over the past decades, there has been an increase of attention to adapting machine learning methods to fully exploit the higher order structure of tensorial data. One problem of great interest is tensor classification, and in particular the extension of linear discriminant analysis to the multilinear setting. We propose a novel method for multilinear discriminant analysis that is radically different from the ones considered so far, and it is the first extension to tensors of quadratic discriminant analysis. Our proposed approach uses invariant theory to extend the nearest Mahalanobis distance classifier to the higher-order setting, and to formulate a well-behaved optimization problem. We extensively test our method on a variety of synthetic data, outperforming previously proposed MDA techniques. We also show how to leverage multi-lead ECG data by constructing tensors via taut string, and use our method to classify healthy signals versus unhealthy ones; our method outperforms state-of-the-art MDA methods, especially after adding significant levels of noise to the signals. Our approach reached an AUC of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.95</mn><mo>(</mo><mn>0.03</mn><mo>)</mo></mrow></semantics></math></inline-formula> on clean signals—where the second best method reached <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.91</mn><mo>(</mo><mn>0.03</mn><mo>)</mo></mrow></semantics></math></inline-formula>—and an AUC of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.89</mn><mo>(</mo><mn>0.03</mn><mo>)</mo></mrow></semantics></math></inline-formula> after adding noise to the signals (with a signal-to-noise-ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>30</mn></mrow></semantics></math></inline-formula>)—where the second best method reached <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.85</mn><mo>(</mo><mn>0.05</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Our approach is fundamentally different than previous work in this direction, and proves to be faster, more stable, and more accurate on the tests we performed.
first_indexed 2024-03-11T09:16:02Z
format Article
id doaj.art-6bca1068951840d0ae9b3963f3c35402
institution Directory Open Access Journal
issn 1999-4893
language English
last_indexed 2024-03-11T09:16:02Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Algorithms
spelling doaj.art-6bca1068951840d0ae9b3963f3c354022023-11-16T18:37:49ZengMDPI AGAlgorithms1999-48932023-02-0116210410.3390/a16020104Quadratic Multilinear Discriminant Analysis for Tensorial Data ClassificationCristian Minoccheri0Olivia Alge1Jonathan Gryak2Kayvan Najarian3Harm Derksen4Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USADepartment of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USAComputer Science Department, Queen’s College, CUNY, New York, NY 11367, USADepartment of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USAMathematics Department, Northeastern University, Boston, MA 02115, USAOver the past decades, there has been an increase of attention to adapting machine learning methods to fully exploit the higher order structure of tensorial data. One problem of great interest is tensor classification, and in particular the extension of linear discriminant analysis to the multilinear setting. We propose a novel method for multilinear discriminant analysis that is radically different from the ones considered so far, and it is the first extension to tensors of quadratic discriminant analysis. Our proposed approach uses invariant theory to extend the nearest Mahalanobis distance classifier to the higher-order setting, and to formulate a well-behaved optimization problem. We extensively test our method on a variety of synthetic data, outperforming previously proposed MDA techniques. We also show how to leverage multi-lead ECG data by constructing tensors via taut string, and use our method to classify healthy signals versus unhealthy ones; our method outperforms state-of-the-art MDA methods, especially after adding significant levels of noise to the signals. Our approach reached an AUC of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.95</mn><mo>(</mo><mn>0.03</mn><mo>)</mo></mrow></semantics></math></inline-formula> on clean signals—where the second best method reached <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.91</mn><mo>(</mo><mn>0.03</mn><mo>)</mo></mrow></semantics></math></inline-formula>—and an AUC of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.89</mn><mo>(</mo><mn>0.03</mn><mo>)</mo></mrow></semantics></math></inline-formula> after adding noise to the signals (with a signal-to-noise-ratio of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mn>30</mn></mrow></semantics></math></inline-formula>)—where the second best method reached <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.85</mn><mo>(</mo><mn>0.05</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Our approach is fundamentally different than previous work in this direction, and proves to be faster, more stable, and more accurate on the tests we performed.https://www.mdpi.com/1999-4893/16/2/104tensorsmultilinear discriminant analysisquadratic discriminant analysisclassification
spellingShingle Cristian Minoccheri
Olivia Alge
Jonathan Gryak
Kayvan Najarian
Harm Derksen
Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification
Algorithms
tensors
multilinear discriminant analysis
quadratic discriminant analysis
classification
title Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification
title_full Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification
title_fullStr Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification
title_full_unstemmed Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification
title_short Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification
title_sort quadratic multilinear discriminant analysis for tensorial data classification
topic tensors
multilinear discriminant analysis
quadratic discriminant analysis
classification
url https://www.mdpi.com/1999-4893/16/2/104
work_keys_str_mv AT cristianminoccheri quadraticmultilineardiscriminantanalysisfortensorialdataclassification
AT oliviaalge quadraticmultilineardiscriminantanalysisfortensorialdataclassification
AT jonathangryak quadraticmultilineardiscriminantanalysisfortensorialdataclassification
AT kayvannajarian quadraticmultilineardiscriminantanalysisfortensorialdataclassification
AT harmderksen quadraticmultilineardiscriminantanalysisfortensorialdataclassification