Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
<p>Stable water isotopes are used to infer changes in the hydrological cycle for different climate periods and various climatic archives. Following previous developments of <span class="inline-formula"><i>δ</i><sup>18</sup></span>O in the coupled c...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2024-03-01
|
Series: | Geoscientific Model Development |
Online Access: | https://gmd.copernicus.org/articles/17/2117/2024/gmd-17-2117-2024.pdf |
_version_ | 1827318937509953536 |
---|---|
author | T. Extier T. Caley D. M. Roche D. M. Roche |
author_facet | T. Extier T. Caley D. M. Roche D. M. Roche |
author_sort | T. Extier |
collection | DOAJ |
description | <p>Stable water isotopes are used to infer changes in the hydrological cycle for different climate periods and various climatic archives. Following previous developments of <span class="inline-formula"><i>δ</i><sup>18</sup></span>O in the coupled climate model of intermediate complexity, iLOVECLIM, we present here the implementation of the <span class="inline-formula"><sup>1</sup></span>H<span class="inline-formula"><sup>2</sup></span>H<span class="inline-formula"><sup>16</sup></span>O and <span class="inline-formula"><sup>1</sup></span>H<span class="inline-formula"><sub>2</sub></span><span class="inline-formula"><sup>17</sup></span>O water isotopes in the different components of this model and calculate the associated secondary markers deuterium excess (d-excess) and oxygen-17 excess (<span class="inline-formula"><sup>17</sup></span>O-excess) in the atmosphere and ocean. So far, the latter has only been modelled by the atmospheric model LMDZ4. Results of a 5000-year equilibrium simulation under preindustrial conditions are analysed and compared to observations and several isotope-enabled models for the atmosphere and ocean components.</p>
<p>In the atmospheric component, the model correctly reproduces the first-order global distribution of the <span class="inline-formula"><i>δ</i><sup>2</sup></span>H and d-excess as observed in the data (<span class="inline-formula"><i>R</i>=0.56</span> for <span class="inline-formula"><i>δ</i><sup>2</sup></span>H and 0.36 for d-excess), even if local differences are observed. The model–data correlation is within the range of other water-isotope-enabled general circulation models. The main isotopic effects and the latitudinal gradient are properly modelled, similarly to previous water-isotope-enabled general circulation model simulations, despite a simplified atmospheric component in iLOVECLIM. One exception is observed in Antarctica where the model does not correctly estimate the water isotope composition, a consequence of the non-conservative behaviour of the advection scheme at a very low moisture content. The modelled <span class="inline-formula"><sup>17</sup></span>O-excess presents a too-important dispersion of the values in comparison to the observations and is not correctly reproduced in the model, mainly because of the complex processes involved in the <span class="inline-formula"><sup>17</sup></span>O-excess isotopic value. For the ocean, the model simulates an adequate isotopic ratio in comparison to the observations, except for local areas such as the surface of the Arabian Sea, a part of the Arctic and the western equatorial Indian Ocean. Data–model evaluation also presents a good match for the <span class="inline-formula"><i>δ</i><sup>2</sup></span>H over the entire water column in the Atlantic Ocean, reflecting the influence of the different water masses.</p> |
first_indexed | 2024-04-25T00:11:18Z |
format | Article |
id | doaj.art-6bdb485e814b4c8bb1d1d0c44a985e23 |
institution | Directory Open Access Journal |
issn | 1991-959X 1991-9603 |
language | English |
last_indexed | 2024-04-25T00:11:18Z |
publishDate | 2024-03-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Geoscientific Model Development |
spelling | doaj.art-6bdb485e814b4c8bb1d1d0c44a985e232024-03-13T11:24:39ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032024-03-01172117213910.5194/gmd-17-2117-2024Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)T. Extier0T. Caley1D. M. Roche2D. M. Roche3Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, FranceUniv. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, FranceLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceEarth and Climate Cluster, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 101 HV Amsterdam, the Netherlands<p>Stable water isotopes are used to infer changes in the hydrological cycle for different climate periods and various climatic archives. Following previous developments of <span class="inline-formula"><i>δ</i><sup>18</sup></span>O in the coupled climate model of intermediate complexity, iLOVECLIM, we present here the implementation of the <span class="inline-formula"><sup>1</sup></span>H<span class="inline-formula"><sup>2</sup></span>H<span class="inline-formula"><sup>16</sup></span>O and <span class="inline-formula"><sup>1</sup></span>H<span class="inline-formula"><sub>2</sub></span><span class="inline-formula"><sup>17</sup></span>O water isotopes in the different components of this model and calculate the associated secondary markers deuterium excess (d-excess) and oxygen-17 excess (<span class="inline-formula"><sup>17</sup></span>O-excess) in the atmosphere and ocean. So far, the latter has only been modelled by the atmospheric model LMDZ4. Results of a 5000-year equilibrium simulation under preindustrial conditions are analysed and compared to observations and several isotope-enabled models for the atmosphere and ocean components.</p> <p>In the atmospheric component, the model correctly reproduces the first-order global distribution of the <span class="inline-formula"><i>δ</i><sup>2</sup></span>H and d-excess as observed in the data (<span class="inline-formula"><i>R</i>=0.56</span> for <span class="inline-formula"><i>δ</i><sup>2</sup></span>H and 0.36 for d-excess), even if local differences are observed. The model–data correlation is within the range of other water-isotope-enabled general circulation models. The main isotopic effects and the latitudinal gradient are properly modelled, similarly to previous water-isotope-enabled general circulation model simulations, despite a simplified atmospheric component in iLOVECLIM. One exception is observed in Antarctica where the model does not correctly estimate the water isotope composition, a consequence of the non-conservative behaviour of the advection scheme at a very low moisture content. The modelled <span class="inline-formula"><sup>17</sup></span>O-excess presents a too-important dispersion of the values in comparison to the observations and is not correctly reproduced in the model, mainly because of the complex processes involved in the <span class="inline-formula"><sup>17</sup></span>O-excess isotopic value. For the ocean, the model simulates an adequate isotopic ratio in comparison to the observations, except for local areas such as the surface of the Arabian Sea, a part of the Arctic and the western equatorial Indian Ocean. Data–model evaluation also presents a good match for the <span class="inline-formula"><i>δ</i><sup>2</sup></span>H over the entire water column in the Atlantic Ocean, reflecting the influence of the different water masses.</p>https://gmd.copernicus.org/articles/17/2117/2024/gmd-17-2117-2024.pdf |
spellingShingle | T. Extier T. Caley D. M. Roche D. M. Roche Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5) Geoscientific Model Development |
title | Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5) |
title_full | Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5) |
title_fullStr | Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5) |
title_full_unstemmed | Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5) |
title_short | Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5) |
title_sort | modelling water isotopologues sup 1 sup h sup 2 sup h sup 16 sup o sup 1 sup h sub 2 sub sup 17 sup o in the coupled numerical climate model iloveclim version 1 1 5 |
url | https://gmd.copernicus.org/articles/17/2117/2024/gmd-17-2117-2024.pdf |
work_keys_str_mv | AT textier modellingwaterisotopologuessup1suphsup2suphsup16suposup1suphsub2subsup17supointhecouplednumericalclimatemodeliloveclimversion115 AT tcaley modellingwaterisotopologuessup1suphsup2suphsup16suposup1suphsub2subsup17supointhecouplednumericalclimatemodeliloveclimversion115 AT dmroche modellingwaterisotopologuessup1suphsup2suphsup16suposup1suphsub2subsup17supointhecouplednumericalclimatemodeliloveclimversion115 AT dmroche modellingwaterisotopologuessup1suphsup2suphsup16suposup1suphsub2subsup17supointhecouplednumericalclimatemodeliloveclimversion115 |