Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)

<p>Stable water isotopes are used to infer changes in the hydrological cycle for different climate periods and various climatic archives. Following previous developments of <span class="inline-formula"><i>δ</i><sup>18</sup></span>O in the coupled c...

Full description

Bibliographic Details
Main Authors: T. Extier, T. Caley, D. M. Roche
Format: Article
Language:English
Published: Copernicus Publications 2024-03-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/17/2117/2024/gmd-17-2117-2024.pdf
_version_ 1827318937509953536
author T. Extier
T. Caley
D. M. Roche
D. M. Roche
author_facet T. Extier
T. Caley
D. M. Roche
D. M. Roche
author_sort T. Extier
collection DOAJ
description <p>Stable water isotopes are used to infer changes in the hydrological cycle for different climate periods and various climatic archives. Following previous developments of <span class="inline-formula"><i>δ</i><sup>18</sup></span>O in the coupled climate model of intermediate complexity, iLOVECLIM, we present here the implementation of the <span class="inline-formula"><sup>1</sup></span>H<span class="inline-formula"><sup>2</sup></span>H<span class="inline-formula"><sup>16</sup></span>O and <span class="inline-formula"><sup>1</sup></span>H<span class="inline-formula"><sub>2</sub></span><span class="inline-formula"><sup>17</sup></span>O water isotopes in the different components of this model and calculate the associated secondary markers deuterium excess (d-excess) and oxygen-17 excess (<span class="inline-formula"><sup>17</sup></span>O-excess) in the atmosphere and ocean. So far, the latter has only been modelled by the atmospheric model LMDZ4. Results of a 5000-year equilibrium simulation under preindustrial conditions are analysed and compared to observations and several isotope-enabled models for the atmosphere and ocean components.</p> <p>In the atmospheric component, the model correctly reproduces the first-order global distribution of the <span class="inline-formula"><i>δ</i><sup>2</sup></span>H and d-excess as observed in the data (<span class="inline-formula"><i>R</i>=0.56</span> for <span class="inline-formula"><i>δ</i><sup>2</sup></span>H and 0.36 for d-excess), even if local differences are observed. The model–data correlation is within the range of other water-isotope-enabled general circulation models. The main isotopic effects and the latitudinal gradient are properly modelled, similarly to previous water-isotope-enabled general circulation model simulations, despite a simplified atmospheric component in iLOVECLIM. One exception is observed in Antarctica where the model does not correctly estimate the water isotope composition, a consequence of the non-conservative behaviour of the advection scheme at a very low moisture content. The modelled <span class="inline-formula"><sup>17</sup></span>O-excess presents a too-important dispersion of the values in comparison to the observations and is not correctly reproduced in the model, mainly because of the complex processes involved in the <span class="inline-formula"><sup>17</sup></span>O-excess isotopic value. For the ocean, the model simulates an adequate isotopic ratio in comparison to the observations, except for local areas such as the surface of the Arabian Sea, a part of the Arctic and the western equatorial Indian Ocean. Data–model evaluation also presents a good match for the <span class="inline-formula"><i>δ</i><sup>2</sup></span>H over the entire water column in the Atlantic Ocean, reflecting the influence of the different water masses.</p>
first_indexed 2024-04-25T00:11:18Z
format Article
id doaj.art-6bdb485e814b4c8bb1d1d0c44a985e23
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-04-25T00:11:18Z
publishDate 2024-03-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-6bdb485e814b4c8bb1d1d0c44a985e232024-03-13T11:24:39ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032024-03-01172117213910.5194/gmd-17-2117-2024Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)T. Extier0T. Caley1D. M. Roche2D. M. Roche3Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, FranceUniv. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, FranceLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceEarth and Climate Cluster, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 101 HV Amsterdam, the Netherlands<p>Stable water isotopes are used to infer changes in the hydrological cycle for different climate periods and various climatic archives. Following previous developments of <span class="inline-formula"><i>δ</i><sup>18</sup></span>O in the coupled climate model of intermediate complexity, iLOVECLIM, we present here the implementation of the <span class="inline-formula"><sup>1</sup></span>H<span class="inline-formula"><sup>2</sup></span>H<span class="inline-formula"><sup>16</sup></span>O and <span class="inline-formula"><sup>1</sup></span>H<span class="inline-formula"><sub>2</sub></span><span class="inline-formula"><sup>17</sup></span>O water isotopes in the different components of this model and calculate the associated secondary markers deuterium excess (d-excess) and oxygen-17 excess (<span class="inline-formula"><sup>17</sup></span>O-excess) in the atmosphere and ocean. So far, the latter has only been modelled by the atmospheric model LMDZ4. Results of a 5000-year equilibrium simulation under preindustrial conditions are analysed and compared to observations and several isotope-enabled models for the atmosphere and ocean components.</p> <p>In the atmospheric component, the model correctly reproduces the first-order global distribution of the <span class="inline-formula"><i>δ</i><sup>2</sup></span>H and d-excess as observed in the data (<span class="inline-formula"><i>R</i>=0.56</span> for <span class="inline-formula"><i>δ</i><sup>2</sup></span>H and 0.36 for d-excess), even if local differences are observed. The model–data correlation is within the range of other water-isotope-enabled general circulation models. The main isotopic effects and the latitudinal gradient are properly modelled, similarly to previous water-isotope-enabled general circulation model simulations, despite a simplified atmospheric component in iLOVECLIM. One exception is observed in Antarctica where the model does not correctly estimate the water isotope composition, a consequence of the non-conservative behaviour of the advection scheme at a very low moisture content. The modelled <span class="inline-formula"><sup>17</sup></span>O-excess presents a too-important dispersion of the values in comparison to the observations and is not correctly reproduced in the model, mainly because of the complex processes involved in the <span class="inline-formula"><sup>17</sup></span>O-excess isotopic value. For the ocean, the model simulates an adequate isotopic ratio in comparison to the observations, except for local areas such as the surface of the Arabian Sea, a part of the Arctic and the western equatorial Indian Ocean. Data–model evaluation also presents a good match for the <span class="inline-formula"><i>δ</i><sup>2</sup></span>H over the entire water column in the Atlantic Ocean, reflecting the influence of the different water masses.</p>https://gmd.copernicus.org/articles/17/2117/2024/gmd-17-2117-2024.pdf
spellingShingle T. Extier
T. Caley
D. M. Roche
D. M. Roche
Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
Geoscientific Model Development
title Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
title_full Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
title_fullStr Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
title_full_unstemmed Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
title_short Modelling water isotopologues (<sup>1</sup>H<sup>2</sup>H<sup>16</sup>O, <sup>1</sup>H<sub>2</sub><sup>17</sup>O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
title_sort modelling water isotopologues sup 1 sup h sup 2 sup h sup 16 sup o sup 1 sup h sub 2 sub sup 17 sup o in the coupled numerical climate model iloveclim version 1 1 5
url https://gmd.copernicus.org/articles/17/2117/2024/gmd-17-2117-2024.pdf
work_keys_str_mv AT textier modellingwaterisotopologuessup1suphsup2suphsup16suposup1suphsub2subsup17supointhecouplednumericalclimatemodeliloveclimversion115
AT tcaley modellingwaterisotopologuessup1suphsup2suphsup16suposup1suphsub2subsup17supointhecouplednumericalclimatemodeliloveclimversion115
AT dmroche modellingwaterisotopologuessup1suphsup2suphsup16suposup1suphsub2subsup17supointhecouplednumericalclimatemodeliloveclimversion115
AT dmroche modellingwaterisotopologuessup1suphsup2suphsup16suposup1suphsub2subsup17supointhecouplednumericalclimatemodeliloveclimversion115