Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau

Time series of the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been successfully used to reveal changes in terrestrial water storage (TWS) in many parts of the world. This has been hindered in the interior of the Tibetan Plateau since the derived TWS changes there are very...

Full description

Bibliographic Details
Main Authors: Longwei Xiang, Hansheng Wang, Holger Steffen, Baojin Qiao, Wei Feng, Lulu Jia, Peng Gao
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/3/544
Description
Summary:Time series of the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been successfully used to reveal changes in terrestrial water storage (TWS) in many parts of the world. This has been hindered in the interior of the Tibetan Plateau since the derived TWS changes there are very sensitive to the selections of different available GRACE solutions, and filters to remove north-south-oriented (N-S) stripe features in the observations. This has resulted in controversial distributions of the TWS changes in previous studies. In this paper, we produce aggregated hydrology signals (AHS) of TWS changes from 2003 to 2009 in the Tibetan Plateau and test a large set of GRACE solution-filter combinations and mascon models to identify the best combination or mascon model whose filtered results match our AHS. We find that the application of a destriping filter is indispensable to remove correlated errors shown as N-S stripes. Three best-performing destriping filters are identified and, combined with two best-performing solutions, they represent the most reliable solution-filter combinations for determination of weak terrestrial water storage changes in the interior of the Tibetan Plateau from GRACE. In turn, more than 100 other tested solution-filter combinations and mascon solutions lead to very different distributions of the TWS changes inside and outside the plateau that partly disagree largely with the AHS. This is mainly attributed to less effective suppression of N-S stripe noises. Our results also show that the most effective destriping is performed within a maximum degree and order of 60 for GRACE spherical harmonic solutions. The results inside the plateau show one single anomaly in the TWS trend when additional smoothing with a 340-km-radius Gaussian filter is applied. We suggest using our identified best solution-filter combinations for the determination of TWS changes in the Tibetan Plateau and adjacent areas during the whole GRACE operation time span from 2002 to 2017 as well as the succeeding GRACE-FO mission.
ISSN:2072-4292