LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA
90% of the worldwide schistosomiasis burden falls on sub-Saharan Africa. Control efforts are often based on infrequent, small-scale health surveys, which are expensive and logistically difficult to conduct. Use of satellite imagery to predictively model infectious disease transmission has great pote...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-06-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/215/2016/isprs-archives-XLI-B8-215-2016.pdf |
_version_ | 1818539742221828096 |
---|---|
author | M. Wrable A. Liss A. Kulinkina M. Koch N. K. Biritwum A. Ofosu K. C. Kosinski D. M. Gute E. N. Naumova |
author_facet | M. Wrable A. Liss A. Kulinkina M. Koch N. K. Biritwum A. Ofosu K. C. Kosinski D. M. Gute E. N. Naumova |
author_sort | M. Wrable |
collection | DOAJ |
description | 90% of the worldwide schistosomiasis burden falls on sub-Saharan Africa. Control efforts are often based on infrequent, small-scale health surveys, which are expensive and logistically difficult to conduct. Use of satellite imagery to predictively model infectious disease transmission has great potential for public health applications. Transmission of schistosomiasis requires specific environmental conditions to sustain freshwater snails, however has unknown seasonality, and is difficult to study due to a long lag between infection and clinical symptoms. To overcome this, we employed a comprehensive 8-year time-series built from remote sensing feeds. The purely environmental predictor variables: accumulated precipitation, land surface temperature, vegetative growth indices, and climate zones created from a novel climate regionalization technique, were regressed against 8 years of national surveillance data in Ghana. All data were aggregated temporally into monthly observations, and spatially at the level of administrative districts. The result of an initial mixed effects model had 41% explained variance overall. Stratification by climate zone brought the R<sup>2</sup> as high as 50% for major zones and as high as 59% for minor zones. This can lead to a predictive risk model used to develop a decision support framework to design treatment schemes and direct scarce resources to areas with the highest risk of infection. This framework can be applied to diseases sensitive to climate or to locations where remote sensing would be better suited than health surveys. |
first_indexed | 2024-12-11T21:46:07Z |
format | Article |
id | doaj.art-6bdd20416d454e769116c89320dc888d |
institution | Directory Open Access Journal |
issn | 1682-1750 2194-9034 |
language | English |
last_indexed | 2024-12-11T21:46:07Z |
publishDate | 2016-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
spelling | doaj.art-6bdd20416d454e769116c89320dc888d2022-12-22T00:49:37ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342016-06-01XLI-B821522110.5194/isprs-archives-XLI-B8-215-2016LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANAM. Wrable0A. Liss1A. Kulinkina2M. Koch3N. K. Biritwum4A. Ofosu5K. C. Kosinski6D. M. Gute7E. N. Naumova8Dept. of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, USADept. of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, USADept. of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, USACenter for Remote Sensing, Boston University, Boston, USANeglected Tropical Disease Control Program, Ghana Health Service, Accra, GhanaPolicy, Planning, Monitoring, and Evaluation Division, Ghana Health Service, Accra, GhanaDept. of Community Health, Tufts University, 574 Boston Avenue, Medford, USADept. of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford, USAFriedman School of Nutrition Science and Policy, Tufts University, 150 Harrison Ave, Boston, USA90% of the worldwide schistosomiasis burden falls on sub-Saharan Africa. Control efforts are often based on infrequent, small-scale health surveys, which are expensive and logistically difficult to conduct. Use of satellite imagery to predictively model infectious disease transmission has great potential for public health applications. Transmission of schistosomiasis requires specific environmental conditions to sustain freshwater snails, however has unknown seasonality, and is difficult to study due to a long lag between infection and clinical symptoms. To overcome this, we employed a comprehensive 8-year time-series built from remote sensing feeds. The purely environmental predictor variables: accumulated precipitation, land surface temperature, vegetative growth indices, and climate zones created from a novel climate regionalization technique, were regressed against 8 years of national surveillance data in Ghana. All data were aggregated temporally into monthly observations, and spatially at the level of administrative districts. The result of an initial mixed effects model had 41% explained variance overall. Stratification by climate zone brought the R<sup>2</sup> as high as 50% for major zones and as high as 59% for minor zones. This can lead to a predictive risk model used to develop a decision support framework to design treatment schemes and direct scarce resources to areas with the highest risk of infection. This framework can be applied to diseases sensitive to climate or to locations where remote sensing would be better suited than health surveys.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/215/2016/isprs-archives-XLI-B8-215-2016.pdf |
spellingShingle | M. Wrable A. Liss A. Kulinkina M. Koch N. K. Biritwum A. Ofosu K. C. Kosinski D. M. Gute E. N. Naumova LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
title | LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA |
title_full | LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA |
title_fullStr | LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA |
title_full_unstemmed | LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA |
title_short | LINKING SATELLITE REMOTE SENSING BASED ENVIRONMENTAL PREDICTORS TO DISEASE: AN APPLICATION TO THE SPATIOTEMPORAL MODELLING OF SCHISTOSOMIASIS IN GHANA |
title_sort | linking satellite remote sensing based environmental predictors to disease an application to the spatiotemporal modelling of schistosomiasis in ghana |
url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLI-B8/215/2016/isprs-archives-XLI-B8-215-2016.pdf |
work_keys_str_mv | AT mwrable linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana AT aliss linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana AT akulinkina linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana AT mkoch linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana AT nkbiritwum linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana AT aofosu linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana AT kckosinski linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana AT dmgute linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana AT ennaumova linkingsatelliteremotesensingbasedenvironmentalpredictorstodiseaseanapplicationtothespatiotemporalmodellingofschistosomiasisinghana |