On elementarity of radical classes of modules over noncommutative dedekind duo-domains
We find some sufficient conditions for a radical class of an idempotent radical in the category of modules over a Dedekind left bounded duo-domain to be axiomatizable. In the case of the integer numbers ring this result implies the Gorbachuk-Komarnitskii Theorem on axiomatizable radical classes of A...
Main Authors: | Y.T Bilyak, M.Ya Komarnitskii |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2012-12-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/2148 |
Similar Items
-
On elementarity of radical classes of modules over noncommutative dedekind duo-domains
by: Bilyak Y.T., et al.
Published: (2012-12-01) -
On elementarily of radical classes of modules over noncommutative dedekind duo-domains
by: Y. T. Bilyak, et al.
Published: (2013-01-01) -
SP-Domains are Almost Dedekind — A Streamlined Proof
by: Ahmed Malik Tusif
Published: (2020-06-01) -
ϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
by: M. Rahmatinia, et al.
Published: (2021-01-01) -
The characteristic quasi-polynomials of hyperplane arrangements over residually finite Dedekind domains
by: Masamichi Kuroda, et al.
Published: (2023-06-01)