Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits
Summary: Natural sounds have rich spectrotemporal dynamics. Spectral information is spatially represented in the auditory cortex (ACX) via large-scale maps. However, the representation of temporal information, e.g., sound offset, is unclear. We perform multiscale imaging of neuronal and thalamic act...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-04-01
|
Series: | Cell Reports |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124719303997 |
_version_ | 1818914629838962688 |
---|---|
author | Ji Liu Matthew R. Whiteway Alireza Sheikhattar Daniel A. Butts Behtash Babadi Patrick O. Kanold |
author_facet | Ji Liu Matthew R. Whiteway Alireza Sheikhattar Daniel A. Butts Behtash Babadi Patrick O. Kanold |
author_sort | Ji Liu |
collection | DOAJ |
description | Summary: Natural sounds have rich spectrotemporal dynamics. Spectral information is spatially represented in the auditory cortex (ACX) via large-scale maps. However, the representation of temporal information, e.g., sound offset, is unclear. We perform multiscale imaging of neuronal and thalamic activity evoked by sound onset and offset in awake mouse ACX. ACX areas differed in onset responses (On-Rs) and offset responses (Off-Rs). Most excitatory L2/3 neurons show either On-Rs or Off-Rs, and ACX areas are characterized by differing fractions of On and Off-R neurons. Somatostatin and parvalbumin interneurons show distinct temporal dynamics, potentially amplifying Off-Rs. Functional network analysis shows that ACX areas contain distinct parallel onset and offset networks. Thalamic (MGB) terminals show either On-Rs or Off-Rs, indicating a thalamic origin of On and Off-R pathways. Thus, ACX areas spatially represent temporal features, and this representation is created by spatial convergence and co-activation of distinct MGB inputs and is refined by specific intracortical connectivity. : Using multiscale imaging of mouse auditory cortices, Liu et al. found that the offset response is tonotopically organized and spatially extensive across auditory fields, while A1 L2/3 pyramidal neurons process tone onset and offset in parallel networks. The offset response is amplified by differential convergence of thalamic input and intracortical processing involving interneurons. Keywords: auditory cortex, mouse, temporal, pattern, MGB, two-photon imaging |
first_indexed | 2024-12-19T23:49:26Z |
format | Article |
id | doaj.art-6be12f8f7eed4603bd42b45222a2620b |
institution | Directory Open Access Journal |
issn | 2211-1247 |
language | English |
last_indexed | 2024-12-19T23:49:26Z |
publishDate | 2019-04-01 |
publisher | Elsevier |
record_format | Article |
series | Cell Reports |
spelling | doaj.art-6be12f8f7eed4603bd42b45222a2620b2022-12-21T20:01:12ZengElsevierCell Reports2211-12472019-04-01273872885.e7Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical CircuitsJi Liu0Matthew R. Whiteway1Alireza Sheikhattar2Daniel A. Butts3Behtash Babadi4Patrick O. Kanold5Department of Biology, University of Maryland, College Park, MD 20742, USAApplied Mathematics and Statistics and Scientific Computation Program, University of Maryland, College Park, MD 20742, USADepartment of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742, USADepartment of Biology, University of Maryland, College Park, MD 20742, USA; Applied Mathematics and Statistics and Scientific Computation Program, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USADepartment of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742, USADepartment of Biology, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA; Corresponding authorSummary: Natural sounds have rich spectrotemporal dynamics. Spectral information is spatially represented in the auditory cortex (ACX) via large-scale maps. However, the representation of temporal information, e.g., sound offset, is unclear. We perform multiscale imaging of neuronal and thalamic activity evoked by sound onset and offset in awake mouse ACX. ACX areas differed in onset responses (On-Rs) and offset responses (Off-Rs). Most excitatory L2/3 neurons show either On-Rs or Off-Rs, and ACX areas are characterized by differing fractions of On and Off-R neurons. Somatostatin and parvalbumin interneurons show distinct temporal dynamics, potentially amplifying Off-Rs. Functional network analysis shows that ACX areas contain distinct parallel onset and offset networks. Thalamic (MGB) terminals show either On-Rs or Off-Rs, indicating a thalamic origin of On and Off-R pathways. Thus, ACX areas spatially represent temporal features, and this representation is created by spatial convergence and co-activation of distinct MGB inputs and is refined by specific intracortical connectivity. : Using multiscale imaging of mouse auditory cortices, Liu et al. found that the offset response is tonotopically organized and spatially extensive across auditory fields, while A1 L2/3 pyramidal neurons process tone onset and offset in parallel networks. The offset response is amplified by differential convergence of thalamic input and intracortical processing involving interneurons. Keywords: auditory cortex, mouse, temporal, pattern, MGB, two-photon imaginghttp://www.sciencedirect.com/science/article/pii/S2211124719303997 |
spellingShingle | Ji Liu Matthew R. Whiteway Alireza Sheikhattar Daniel A. Butts Behtash Babadi Patrick O. Kanold Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits Cell Reports |
title | Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits |
title_full | Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits |
title_fullStr | Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits |
title_full_unstemmed | Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits |
title_short | Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits |
title_sort | parallel processing of sound dynamics across mouse auditory cortex via spatially patterned thalamic inputs and distinct areal intracortical circuits |
url | http://www.sciencedirect.com/science/article/pii/S2211124719303997 |
work_keys_str_mv | AT jiliu parallelprocessingofsounddynamicsacrossmouseauditorycortexviaspatiallypatternedthalamicinputsanddistinctarealintracorticalcircuits AT matthewrwhiteway parallelprocessingofsounddynamicsacrossmouseauditorycortexviaspatiallypatternedthalamicinputsanddistinctarealintracorticalcircuits AT alirezasheikhattar parallelprocessingofsounddynamicsacrossmouseauditorycortexviaspatiallypatternedthalamicinputsanddistinctarealintracorticalcircuits AT danielabutts parallelprocessingofsounddynamicsacrossmouseauditorycortexviaspatiallypatternedthalamicinputsanddistinctarealintracorticalcircuits AT behtashbabadi parallelprocessingofsounddynamicsacrossmouseauditorycortexviaspatiallypatternedthalamicinputsanddistinctarealintracorticalcircuits AT patrickokanold parallelprocessingofsounddynamicsacrossmouseauditorycortexviaspatiallypatternedthalamicinputsanddistinctarealintracorticalcircuits |