Summary: | Photoacoustic tomography relies on a dense coverage of the surface surrounding the imaged object with ultrasound sensors in order to enable an accurate reconstruction. A curved arrangement of integrating line sensors is proposed that is able to acquire data for a linear projection image of the absorbed energy density distribution in the object. Upon rotation of the object relative to the array, three-dimensional (3D) images can be obtained.
The proposed design is based on the cost-effective piezoelectric polymer film technology with 64 line shaped sensors arranged on a half-cylindrical surface. It is combined with an optical parametric oscillator for the near infrared as a source for laser pulses. Image reconstruction from recorded signals consists of two-dimensional (2D) back projection followed by an inverse Radon transform.
The tomograph exhibits a spatial resolution on the order of 200 to 250 μm. In a phantom experiment, the steps from acquisition of a single, 2D projection image to a full 3D image are demonstrated. Finally, in vivo projection images of a human finger are shown, revealing the near real-time imaging capability of the device in 2D.
|